
These articles from HackSpace magazine and The MagPi Magazine along with this
compilation are licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported (CC BY-NC-SA 3.0).

Figure 1: CC-BY-NC-SA 3.0

1

https://hackspace.raspberrypi.com/
https://magpi.raspberrypi.com/
https://creativecommons.org/licenses/by-nc-sa/3.0/us/
https://creativecommons.org/licenses/by-nc-sa/3.0/us/

Tutorials from HackSpace magazine

1

https://hackspace.raspberrypi.com/

Getting started With KiCad, schematics

SCHOOL OF MAKING

54

In this first of a series of articles around PCB creation with KiCad,
let’s dive into laying out a simple schematic

iCad is an amazing piece of free and
open-source software that allows
anyone, with some time and effort,
to make high-quality PCB designs.
Couple this amazing software with
numerous PCB fabrication companies

and even PCBA services – companies that will make
and assemble your PCB designs – and there’s never
been a better time to get into this aspect of making.

PCB design can be a steep learning curve. With
that in mind, we wanted to start this series of
tutorials with a hack – this is HackSpace magazine
after all! In the first two parts, we are going to create

Getting started with
KiCad, schematics

a PCB design to the point of getting it manufactured.
However, to make this part accessible, we are going
to cut some corners. Don’t worry, we’ll explain
what the corner cuts are, and we’ll do things more
correctly in subsequent articles, once we have the
basics down.

So, first thing, download and install KiCad – the
current stable version is version 7, which was
released in early February 2023. KiCad is available
across a wide range of operating systems –
Windows, macOS, and lots of Linux distributions.
We’re running it on Ubuntu, but it should be
comparable across all the platforms.

K

Jo Hinchliffe

@concreted0g

Jo Hinchliffe is a
constant tinkerer and
is passionate about all
things DIY space. He
loves designing and
scratch-building both
model and high-power
rockets, and releases the
designs and components
as open-source. He also
has a shed full of lathes
and milling machines
and CNC kit!

Above
The final simple
add-on board for a
Raspberry Pi Pico

https://twitter.com/concreted0g

55

FORGE

With it installed, click on the main blue ‘Ki’ KiCad
icon to open the main application. You should see a
screen that looks like Figure 1. You’ll see that, really,
KiCad isn’t just an application, it’s more a suite of
applications that work together. Whilst you can jump
into any application from here, the most common
workflow for KiCad is to first work in the Schematic
Editor and then, after creating a schematic, move
to the PCB Editor to lay out the PCB physically.
Our first action should be to set up a new project.
Click File > New to create a new project. It’s worth
putting projects into their own folder as each KiCad
project generates around five project files and a
folder in which it automatically generates some
project backup files.

Once our new project is created, let’s make a
start. We’re going to
make an add-on board
for the Raspberry Pi
Pico. It’s going to be a
prototyping or ‘kludge’
board with not too
many features on it for
simplicity. It’s going to
have all the Pico pins
broken out to through-
hole pads, it will have a power-indicating LED, and
it will have a reset button. After this, any spare area
on the board will have simple through-hole pads on
it to allow us to connect experiments to the board.
As we said earlier, it’s definitely hacked together, but
will supply us with ample opportunity to learn some
KiCad basics. To begin, open the Schematic Editor
application by clicking the top icon.

You should now see a blank page ready for our
schematic to be drawn (Figure 2). In the lower right-
hand corner, you will see a small collection of text
boxes which include various fields for the name of

the sheet, the revision number of the schematic, and
more. If you left-click somewhere on this section
and then press the E key, you should launch a
window called ‘Page Settings‘. You can edit this to
add any text details or comments you want to add
to this section, but you can also change the page
dimensions – it defaults to A4 – and the orientation
and more. Experiment inserting text into the Page
Settings window to see where the text appears on
the schematic.

With your page set up, we can now begin to
add schematic symbols to the schematic. The
most correct way to make a Pico add-on board
would be to place a Pico in the schematic and
connect everything to it, but we are going to use a
workaround to do this in a much simpler way. The

main idea of our target
add-on board is for us
to be able to solder in
rows of header sockets
so that we can connect
it onto the pins of a Pico.
In turn, we also still
want to be able to solder
to those pins, so we
need each side row of

pins to be broken out to another collection of pads.
To do this we’ll add two 20-pin connectors, one on
each side of our schematic. To add the first one,
we are going to click the ‘Add a Symbol’ icon – the
third icon down on the right-hand column. The first
time you click this icon, it may take a few seconds
for the libraries of schematic symbols to load. Once
loaded, you should see a window called ‘Choose
Symbol’. On the left-hand side of this window, you
should see a list of items, each of which is a library
of a group of schematic symbols. These are grouped
in related items; so, for example, you might find,

If you hover over
any tool icon in
KiCad, you get
a description of
the tool. We’ll
use these tooltips
to describe tool
icons throughout
these articles.

QUICK TIP

It’s definitely hacked
together, but will supply us
with ample opportunity to
learn some KiCad basics

”
”

Figure 1
The opening page
of KiCad with the
different applications
that make up the
KiCad suite listed

Getting started With KiCad, schematics

SCHOOL OF MAKING

56

at the top of the list, ‘4xxx’ which, if you click on the
drop-down menu button next to the name will reveal
a library full of the CMOS 4000 series of logic chips.
You can of course manually scroll through the libraries
and look through the items they contain, but you can
also search the libraries to find what you need. We
are going to add a connector symbol that represents
the 20-pin header we eventually want to be able to fit.
To do this, type ‘conn’ into the search bar and, as you
type, you should notice the list items are now all the
items that start ‘conn’. Scroll down the list and select
the item that reads ‘Conn_01x20_Socket’, and then
click the OK button in the lower right-hand corner of
the window (Figure 3). The Choose Symbol window
will close and you will be back in the Schematic
Editor, and you should have a symbol for our 20-pin
socket attached to your pointer. Move the pointer to
where you want to place the connector and left-click
to place it.

A SACKLOAD OF SOCKETS
We are going to place three more of these into the
schematic. We can again click the Add a Symbol tool
icon but notice that, as the library list area populates,
we now have a ‘Recently Used’ area at the top
with our 20-pin connector listed underneath. Click
this listing and then OK, and we can place the next
connector in the schematic. Repeat this until you
have four of the connectors placed. Next, use the M
and R hotkeys to move and rotate the connectors
so that we have two pairs of connectors in line with
each other, with the small circle ends facing inwards

KEYBOARD WARRIOR
Whilst you can do everything in KiCad with a mouse
and pointer, it’s really worth learning a few quick
keyboard shortcuts that can help make life easier.
Brilliantly, many keyboard keystrokes offer the same
functions in both the Schematic Editor, which we
are using in this tutorial, but also in the PCB Editor,
where you will spend a lot of your time in the next
part of the series. The first useful ones are the F1
and F2 keys for zooming. The F1 key, when pressed,
will zoom in, and F2 will zoom out. Note that both
of these zoom actions are centred around where
your pointer is. With a little practice, it becomes
second nature to move the pointer and zoom in and
out to get the view you need. Next up are the M
and R keys. If you select an object in the Schematic
Editor or the PCB Editor, you can press M and then
that object will move until you left-click to place the
object again. Note that in the PCB Editor, you can
select smaller parts than the complete footprint of
a component. You can therefore select and move
silkscreen labels and more. If you want to select
the whole component, selecting a component
pad will usually then select the entire footprint.
With the R key, you can rotate a selected item
in either the Schematic Editor or the PCB Editor,
again single left-clicking to place the part when
rotated correctly. Note that you can rotate the item
repeatedly to get to the orientation you require.
Finally, another useful shortcut is the E key. With an
item selected, pressing the E key allows you to edit
that item’s properties. This can be any number of
editable parameters, from labels to pad sizes to hole
dimensions and more.

Figure 2
A blank Schematic
sheet with text boxes
for various schematic
labelling and
version numbering

Whenever a tooltip
has a letter in
brackets, that letter
is a hotkey to switch
to that tool.

QUICK TIP

57

FORGE

towards each other. You can also right-click on a
selected symbol and use the Mirror Horizontally tool.
The small circles are the part of the symbol to which
we will create connections.

Using the Add a Wire (W) tool, you can left-click
on one of the connector pin circles and then draw a
connector wire line across to the opposite connector
pin (Figure 4). If you make a mistake, you can use
CTRL+Z to undo the last action – or, to cancel the
wire mid-draw, you can right-click and select Cancel
from the drop-down menu.

Continue to wire between each of the opposite
pins on each pair of our connectors until they are all
connected together. Notice that each of the connector
symbols have a couple of text references connected
to them. It can be good practice to edit these so
that they are useful and help you keep track of what
things are. Select the whole of one of our connector
symbols (use the selection tool to draw a box over
the entire symbol) and then press E. You should now
see a Symbol Properties dialog box (Figure 5). You
can now edit the ‘reference’ (if required) and the
‘value’ text entries. We edited ours and gave each
connector a descriptive ‘value’ such as ‘Pico_Pins_1-
20_Left’ etc. This is
useful when we lay out
our PCB in the PCB
Editor, as it ensures we
can identify the multiple
connectors correctly.

To finish our
schematic, we are going
to add more components
and make more
connections. To begin, let’s add a resistor and an
LED and connect them to pins 38 (GND) and 36 (3V3
(OUT)) on the Pico. These pins are the third pin and
fifth pin down on our right-hand connector. Use the
same techniques we used earlier to choose a symbol,
searching ‘R’ for a resistor and ‘LED’ for an LED

symbol. Add wires to connect the circuit together, as
shown in Figure 6. Next, let’s add a switch symbol
which we will wire in as a reset button for the Pico.

Adding a reset button is a good example of a way
that KiCad works that some other electronic design
automations (EDA) don’t. In some EDAs, the symbol
you choose at the schematic level defines exactly
the hardware package of the electronic component

that will be on the PCB.
For example, in other
packages you wouldn’t
place a generic resistor
symbol, you would place
a resistor symbol linked
to a specific resistor, say
a 6mm long 1/4 watt
carbon resistor placed
horizontally. This would

mean that, if we wanted to change the component
on the PCB, we have to change the schematic. In
KiCad, the schematic symbol has to be assigned a
footprint – this is why we are going to place a symbol
for a single-pole single-throw switch (SPST), but the
actual component can be any SPST switch or any

To finish our schematic,
we are going to add more

components and make
more connections

”
”

Figure 3
The Choose Symbol
dialog that allows
you to search for
schematic symbols

Figure 4
Adding our wire
connections between
the pins of the
schematic symbols

Getting started With KiCad, schematics

SCHOOL OF MAKING

58

button package. In our case, we’ll choose some type
of momentary push-button for the reset. This way of
working means that if you find you need to replace a
component with a different type (commonly as you
can’t find a component in stock), you simply change
the footprint associated with the symbol and don’t
have to edit your correct schematic. It also makes the
schematics concise and readable, which is important if
you want to share your design.

SWITCHED ON
To add the switch, search the Choose a Symbol
dialog with ‘sw_spst’ to take you directly to the
single-pole single-throw switch and again connect
wires, as shown in Figure 7. Finally, add four
connectors to act as our prototyping areas on the
board; search for ‘conn_01x04’ to take you directly
to this symbol.

Let’s now set up the associated footprints for
each schematic symbol. Click the Run Footprint
Assignment Tool icon. Similar to the Choose Symbol
dialog, a window will appear with a list of footprint
libraries down the left-hand side, a centre section
with the schematic symbols of the project listed,
and a right-hand column of filtered footprint results.
You can see a collection of three icons at the top of

the window called ‘Footprint Filters’ and, in the first
instance, make sure all these are selected. As you
get used to component filtering, you might find you
prefer to use different combinations of these filtering
tools (Figure 8). Highlight in the centre section one of
our 20-pin connector components. We need to find a
footprint that has the same number of pins and has
a footprint of a through-hole pad for each pin. As the
Raspberry Pi Pico pins are spaced at the common
2.54mm pitch between each pin, we also need to
make sure our footprint is spaced similarly. You should

ADDING PARTS
As you can tell from this tutorial, KiCad uses
Schematic Symbols and Component Footprints to
create schematics and PCB designs. You should have
a lot of standard libraries built in, and everything in
this project is just using these libraries. Of course
though, you can create your own schematic symbols,
component footprints, and even 3D models of
components and incorporate these into your own
designs creating custom libraries. We’ll cover this,
and lots more in future sections.

Figure 5
Editing a symbol’s
properties allows us
to give symbols more
meaningful names

Figure 6
Adding a resistor and
LED to our schematic

Figure 7
Adding a single‑pole single‑throw switch to the
schematic to work as a reset button for the Pico

Obvious, but
remember to press
the Save button now
and again to save
your work!

QUICK TIP

59

FORGE

have a filtered list on the right-hand side – it should
be filtered to only contain items that would attach to
the 20-pin connector symbol. We chose item number
33 from the connector footprint library, which reads
‘Connector_PinSocket_2.54mm:Pinsocket_1x20_
P2.54mm_vertical’. A single left-click on the item
highlights it in the list, and you can use the ‘View the
selected footprint in the footprint viewer’ tool icon
to open a window showing the PCB footprint layout
design to check if it looks correct. Double-clicking the
highlighted footprint should then add that footprint
name opposite the schematic symbol in the central
list. Continue and add the same footprint to all four
connector symbol listings, although we’ll discuss later
why that isn’t totally correct, and then click the ‘Apply,
save schematic and continue’ button. We’ve decided

Above
Our complete
circuit schematic

Figure 8
The Assign
Footprints dialog

to add surface-mount components for the LED,
resistor, and the button, although we have gone for
SMD package sizes and footprints that would enable
us to hand-solder these. For the LED, we chose the
LED_SMD:LED_0805_2012Metric footprint; for the
resistor, the ‘Resistor_SMD:R_0805_2012Metric’; and
for the switch/button, a ‘Button_Switch_SMD:SW_
SPST_B3SL-1002p’ component. For the detached
4-pin connectors, we simply selected ‘Connector_
PinSocket_2.54mm:PinSocket_1x04_P2.54_Vertical’
for each connector. With all those footprints assigned,
click ’Apply, save schematic and continue’.

In the next instalment, we will import the list
of component footprints into the PCB Editor
and physically lay out our board design ready
for fabrication!

Getting started with KiCad, PCB layout

SCHOOL OF MAKING

54

In this second part of the series looking at PCB creation with KiCad,
we lay out our PCB ready for fabrication

n the last issue, we got our schematic for
our Pico add-on board created, and we
assigned each schematic symbol a footprint
which represents the individual component
we are adding for each part of the design.
In this issue, we will finish this starter project

by laying out the PCB design ready for manufacture.
If you haven’t opened KiCad, do so now. Open the
previous project and select the PCB Editor icon from
the available applications (Figure 1). If you have
opened the project and the Schematic Editor, you
can jump to the PCB Editor by clicking its icon in the
Schematic Editor toolbar.

Having opened the PCB Editor, you should see
a similar page to the Schematic Editor, but in black
(Figure 2). You’ll notice it is blank, so the first action
is to pull in our footprints. To do this, we can click

Getting started
with KiCad, PCB layout

the ‘Update PCB from Schematic’ icon. This opens
a window, and we can simply click the Update PCB
button and then click the Close button (Figure 3).
Once back in the PCB Editor, we now should have
our design as a collection of footprints attached to
our pointer. Left-click to place the component bundle
somewhere in the middle of the page (Figure 4).

The PCB editor has a grid feature which snaps
footprints at useful points. In our current case, the
pin socket footprints will snap with the centres of
the pad holes on the grid. As the Pico conforms to
2.54 mm pin spacings, it’s useful at this point to set
the board editor grid to ‘2.54 mm (0.1000 in)’. You
can select this from the centre drop-down menu on
the upper toolbar. We can now align our two pairs
of pin socket footprints so that they are in line with
each other horizontally.

I

Jo Hinchliffe

@concreted0g

Jo Hinchliffe is a
constant tinkerer and
is passionate about all
things DIY space. He
loves designing and
scratch-building both
model and high-power
rockets, and releases the
designs and components
as open-source. He also
has a shed full of lathes
and milling machines
and CNC kit!

Figure 1
Our completed
routed PCB design

https://twitter.com/concreted0g

55

FORGE

Next, move one element of one pair so that it
lies two grid dots away from its connected pair.
You do this by clicking on the centre of a pad on
the footprint and then pressing M, similar to in the
Schematic Editor. If you only move it across one grid
dot, they will overlap. You should see a collection
of small white lines connecting the pads between
the two connected footprints – this is called the
‘rat’s nest’. We will remove these white lines when
we lay the trace connections. It’s important that
our board matches up to a Pico, so we used the
dimensional diagram (Figure 5, overleaf) taken
from the Pico data sheet documentation, available
here: hsmag.cc/PicoDatasheet. You’ll notice that
the distance between the vertical rows of pins
is 17.78 mm – this equates to 7 × 2.54 mm. This
is why your Pico fits perfectly into a prototyping
breadboard. Move the remaining outer pin socket
footprints so that it is on top of one of the pairs you
have placed correctly, and then move it seven grid
spots to the right. You can now arrange the last
footprint to be two grid spots inside. The outside
pair of footprints should now match a Pico’s pin

The PCB editor has
a grid feature which
snaps footprints at

useful points

”
”

Figure 2
The blank PCB Editor ready to import our footprints

Figure 3
The Update PCB from
Schematic window
primarily brings in the
component footprints
and connectivity, or
can be used to apply
later changes to a
schematic design

http://hsmag.cc/PicoDatasheet

SCHOOL OF MAKING

56

positions, and the inner footprints should be close
to them, and parallel. So far, we should have only
been working on the F.Cu (PgUp) layer, which is the
top copper layer on our PCB board. Before we route
the tracks between our footprints, double-check
that you are on this layer by checking the drop-down
menu on the top toolbar.

LEAVE ONLY FOOTPRINTS
Next, we can wire the pads on the opposite
footprints together. To do this, select the Route
Tracks (X) icon, then click the centre of a pad and
drag the track over to the centre of the opposite
pad. The track should be red, indicating that it’s on
the top copper layer. If we, for example, were to
move to the B.Cu (PgDn) layer, the default colour for
tracks on the lower copper layer is blue. Continue
and connect all pads together, noticing that the rat’s
nest lines disappear as you do so.

Referring to our Pico technical drawing, it’s a
good time to define the shape and edges of the
board. To do this, we can use the uppermost drop-
down menu to move from the F.Cu (PgUp) layer to
the Edge.Cuts layer. On this layer, we can use the
Draw a Rectangle tool to create a cutout shape for
our board. Before we select this tool, let’s switch

Figure 4
Our component
footprints imported,
with the rat’s nest a
representation of the
connections between
components and pads
made of small lines

Figure 5
A technical drawing
of the Pico taken from
the data sheet gives
us the dimensional
information we need

Remember, a lot
of your keyboard
shortcuts are
universal. For
example, F1 and F2
zooming works in
both the Schematic
Editor and the
PCB Editor.

QUICK TIP

Getting started with KiCad, PCB layout

http://F.Cu
http://B.Cu
http://F.Cu

57

FORGE

the grid to a more useful spacing. Select the 1 mm
grid spacing, then left-click the rectangle tool.
Left-click anywhere in the PCB Editor page and
drag a rectangle (Figure 6). The rectangle should
be snapping to the grid – we can drag it out until
the labels tell us we are drawing a 21 mm width by
51 mm height rectangle. Left-click one more time
to create the rectangle. Moving back to the Select
Items (S) tool, we can now select the rectangle and
press the M key to move it into position. Notice

from the Pico technical drawing that the outside
edge of the Pico sits 1.61 mm from the centre of
the pin pad position. To position this accurately, we
reduced the grid spacing to the smallest listed and
used a technique to measure distances on the page.
If you press the SPACE bar at any time when in the
PCB Editor, you might notice that values labelled
‘dx’, ‘dy’, and ‘dist’ are set to zero. This is very
useful as you can place your pointer at a point, say
the centre of the top rightmost pad, press

Connect all pads together,
noticing that the

rat’s nest lines disappear
as you do so

”
”

Figure 6
Drawing a rectangle
that defines the
cut edge of the
PCB board

Left
Routing tracks to
connect the
pads together

SCHOOL OF MAKING

58

the SPACE bar to create a zero or datum point,
and then move the pointer to, in this case, the
edge cut rectangle. We can then use the dx and dy
values to help us position this, or anything we need
to, accurately.

Once we have positioned the board edge
rectangle correctly, we can get a first glimpse of
our board in the 3D Viewer. You can actually look at
the board in the 3D Viewer before adding an edge
cut, and it will render to a rectangle size that is the
smallest that can accommodate all the footprints
currently in the PCB. To view the PCB, click View
> 3D Viewer. You’ll see the board, but you’ll notice
that all the 3D models of the header sockets are all
placed into the rows of holes. In reality, we would
only want headers on the outer rows installed on
the back of the board, with the inner rows left
unpopulated, or possibly populated with header
pins. We could edit the board and the component
footprints to reflect this, but for this ‘getting started’
example, we can click the Toggle 3D Models for
Through Hole type Components (T) icon to turn
off the models (Figure 7). In future articles, we’ll
explore not only using correct 3D models but we’ll

ASSIGNED AND SEALED
One point we mentioned earlier in this project is the
idea that KiCad schematic symbols are generic – we
assign the hardware footprint to them using the
Assign Footprint tools. As an experiment, we could
now show the advantage of this. Say we have our
PCB layout completed and ready for manufacture, but
after checking, we realise that our B3SL-1002P button
package is not available or in stock anywhere. We
can simply go back to the Schematic Editor and click
the Assign Footprint tool icon. We can then edit the
SW_SPST symbol to have a different, and hopefully,
in stock, component. For example, we selected the
B3SL-1022P footprint package, double-clicking it to
ensure it is added to the centre console list. You can
then click Apply > Save Schematic > Continue, and
then click OK to close the dialog. Moving back to the
PCB Editor, you can then once again click the Update
PCB with changes made to the schematic (F8) icon, or
press F8 on the keyboard and the board will update with
the replacement footprint added. If, as in this example,
you replace the part with another part that is virtually
the same footprint, you might not need to rewire the
traces, but, of course, you should check and adjust
connections and positioning as required.

Figure 7
A first glimpse of our
rendered PCB board

There are lots
of drawing tools
to create more
complex edge cuts
in KiCad. Also, in
future articles,
 we’ll look at
importing graphical
elements from other
drawing software,
such as Inkscape.

QUICK TIP

Getting started with KiCad, PCB layout

59

FORGE

look at how we can add custom 3D models to
our libraries.

FLOOD ZONE
We can now continue to arrange and wire our
remaining components. For the LED and the switch/
button, we are wiring traces directly to the pin
connections to the Pico – this is perfectly OK, but
in future parts of the series, we will look at using
copper flood zones. A copper flood zone is where an
area on a layer of a PCB is flooded with copper that
is connected to a certain ‘net’, with the net value
being chosen by the user. This means, for example,
that we could make a PCB where everything on the
back layer is a GND-connected copper flood, then
any pads that connect to ground simply join the

flood with small traces. This can dramatically reduce
the amount of traces in more complex designs,
making them easier to route.

Finally, how do we get this board made? Well,
there are lots of options – we will look at many
of them throughout these articles. Globally, there
are lots of services available from companies to
manufacture and even assemble your boards.
These services may need different approaches
in terms of what information and files you need
to upload to get the job done. Often we need to
export Gerber files for each layer of the PCB, and
also drill files which show the position and size

of holes. Some companies might have limitations
on what size holes they can produce and what
tolerance they can produce the board too. We’ll
explore this in future articles, but the simplest
way, if you wanted to get this board fabricated to
an excellent standard, is you can upload the file
that ends ‘.kicad_pcb’ to the OSHPark website
(oshpark.com). The website and service are
brilliant. In-browser, it creates numerous renders of
your board, which you can then inspect and check
to see if they are correct before adding the PCB
to your cart to be manufactured. In a few weeks
– often less – you’ll have ‘Perfect Purple PCBs’
through your door!

In a few weeks – often
less – you’ll have

‘Perfect Purple PCBs’
through your door!

”
”

Above
We’ll use numerous
PCB fabricators in
this series, but a
great place to start,
where you can directly
upload KiCad PCB
files, is OSHPark

Below
Our complete PCB
with all components
placed and routed

http://oshpark.com

KiCad libraries, symbols, and footprints

SCHOOL OF MAKING

52

n the first two parts of this KiCad series,
we’ve covered enough to make a basic
PCB suitable for simple circuits, or maybe
a breakout board. In this part, we are
going to look at some next steps that open
up the capabilities of what you can make

in KiCad. We’ll explore both creating libraries and
contents from scratch, but also importing and using
component footprints and schematic symbols
from other sources. We’ll also improve the quality
of the boards by using flooded areas for common
connections, such as all the circuit points that are
connected to ground.

We’ve used a relatively simple design to show
these techniques – making a PCB that essentially
has two modules on board. Quite often, when
making, we work with electronics modules on
breadboards and a custom PCB can be the perfect
way to take a breadboard project to a permanent
home that’s more rugged and usable. We aren’t

going to go step by step through the making of this
board, but the project files are available at hsmag.
cc/issue68, and the knowledge and techniques
we used in the first two parts of this series, in
combination with this section, should give you
enough knowledge to recreate this project.

We’ve chosen to use a Solder Party Stamp and
a Pimoroni BMP280 module connected together
so that the resulting board can be used to measure
and log temperature and barometric pressure. The
Solder Party Stamp is an excellent board that has
an RP2040 at its heart, and is operationally similar
to a Raspberry Pi Pico. The RP2040 is fully broken
out to header pins which are castellated, so you
can also solder the Stamp onto a recipient PCB's
pads without having to use header pins. The Stamp
also has the USB connection broken out as well as
on-board LiPo charging. This means if we add a USB
connection, we can also add a LiPo cell and make
the project stand-alone. The Solder Party Stamp is
really well-documented and is open-source. Solder
Party has also published KiCad schematic symbols
and a PCB footprint for the Stamp, therefore we can
use it to learn how to add libraries and import these
useful items into KiCad.

To begin, go to the following link where you will
find the Solder Party Stamp library components:
hsmag.cc/StampFootprints. Click the drop-down
menu on the green Code button and then select
the Download ZIP option to download the libraries.
Unzip the files somewhere on your machine. In
the collection of folders you just unzipped, cut and
paste the entire KiCad folder (N.B. not the KiCad 5
folder) to wherever you want to store your additional

Right
Our completed board,
ready to receive a
Solder Party Stamp
and a Pimoroni
BMP280 module

In this third part of a series of articles around PCB creation with KiCad, let's look at adding
or importing custom libraries, schematic symbols, and component footprints

KiCad libraries, symbols,
and footprints

I
Jo Hinchliffe

@concreted0g

Jo Hinchliffe is a
constant tinkerer and
is passionate about all
things DIY space. He
loves designing and
scratch-building both
model and high-power
rockets, and releases the
designs and components
as open-source. He also
has a shed full of lathes
and milling machines
and CNC kit!

http://hsmag.cc/issue68
http://hsmag.cc/issue68
http://hsmag.cc/StampFootprints

53

FORGE

external KiCad libraries. We have a folder set up in
our home directory for this.

Open KiCad 7 and, in the main page, click the
Preferences drop-down menu and then select the
Manage Symbol Libraries option. This should open
a window with two tabs: the Global Libraries tab
and the Project Specific tab, (Figure 1). Ensuring
you are on the Global Libraries tab, find and click
the small folder icon. Navigate to the folder we
downloaded, extracted, and copy-pasted and open
it to find a folder called KiCad_stamp_lib. Open
this folder and select RP2040_Stamp.kicad.sym
and then click Open. You should now see a new
library listed at the bottom of the Global Libraries tab
called RP2040_Stamp. If you create a new project
and open the Schematic Editor, you can now use
the ‘Add a Symbol’ tool to place a Solder Party
Stamp symbol into the schematic. You can do this
by searching for RP2040 and making sure you select
the symbol from the RP2040_Stamp library (rather
than the stock RP2040 symbol) or by scrolling down
the list of libraries, selecting RP2040_Stamp, and
then selecting the RP2040_Stamp symbol.

It’s a similar experience to add a footprint
library. Again in the KiCad landing page, click
Preferences and then Manage Footprint Libraries.
Again, on the Global Libraries tab, click the small

folder icon (Figure 2). Navigate to the folder we
downloaded and find KiCad_stamp_lib – open that
folder once more but, this time, select the RP2040_
Stamp.pretty folder and click Open. You should see
three files inside, but you don’t need to select any
particular one – just click Open again. Now, back on
the Global Libraries tab, you should be able to scroll
down and see an RP2040_Stamp library entry. You
can check that this has all worked by associating
the correct stamp footprint to the RP2040_Stamp
symbol we placed in the Schematic Editor, and
then you can open up and import the part into the
PCB Editor. If you need a reminder on how to do
those tasks, check out the first and second part of
this series in HackSpace #67 (hsmag.cc/issue67).

Using the BMP280 module gives us an
opportunity to learn how to make both a custom
schematic symbol and a custom footprint for the

Figure 1
The Symbol
Libraries dialog
where we can add or
remove schematic
symbol libraries

If we add a USB
connection, we can also
add a LiPo cell and make
the project stand-alone

”
”

In the project
schematic, we
have sometimes
used net labels to
create connections
between symbols
rather than direct
drawn wires.
We’ll cover this in
some detail in an
upcoming article.

QUICK TIP

http://hsmag.cc/issue67

KiCad libraries, symbols, and footprints

SCHOOL OF MAKING

54

module to use in our board. To do this we will create
our own custom libraries to contain these parts,
and others in the future. Let’s begin with a custom
schematic symbol. In the Schematic Editor, click the
‘Create, delete and edit symbols’ tool button. This
opens the schematic Symbol Editor.

In this new window, click File and then select New
Library from the drop-down menu. You should now
see a small dialog box called Add To Library Table.
In this box, you can select to add your new library
to the Global table. This means any project in KiCad
can access this library; alternatively, selecting Project
means only this KiCad project can access that library.
As the BMP280 is something we might use in other
projects, let's make sure ‘Global’ is highlighted and

then click OK. You’ll now be asked to give your
library a name – it can be anything you want, so
name it, making sure to leave the ‘.kicad_sym’ part
of the file name intact, and click Save. You should
now see your new symbol library name highlighted
on the left-hand side of the Symbol Editor window.
This means that this is the active library, so that
when we select to create a new symbol, it will be
stored in this library automatically. Click File and
select New Symbol… from the drop-down menu.
You should see a New Symbol dialog appear. Give
your symbol a name that will be used in the library
list – make it a useful name that reflects the part.
We went for ‘pi_bmp280’. Clicking OK, you should
now see that a ‘U’ has appeared in the Symbol
Editor window and that the name of the symbol
now appears in the active library in the list on the
left-hand side of the screen. The name will have a
‘*’ next to it, indicating that the symbol has not been
saved. In the Symbol Editor there are some familiar
controls, such as the F1/F2 to zoom in and out.
Zoom out a little to give yourself some room and
let’s get started by adding some pins.

Click the ‘Add a pin’ tool icon. In the dialog, we
can name the pin, give the pin a number, and set the
‘Electrical type’ and change other settings if needed.
For our first pin, let’s name it ‘2-6V_in’, assign it pin
number ’1’, and set the electrical type to ‘Power
input’. Continue to add pins 2, 3, 4, and 5, labelling
them as you can see in Figure 3. As you place pins,
notice that you can use the generic hot keys M for

Figure 2
The Footprint
Libraries dialog
where we can add or
remove PCB footprint
module libraries

Figure 3
The Symbol Editor
window can be used
to create or edit
schematic symbols

55

FORGE

move and R for rotate, similar to the Schematic or
PCB Editors. Once you have all your pins created,
you can add a text label using the ‘Add a text item’
tool. This is useful so that you can identify the
symbol quickly when looking at a schematic. Finally,
let’s draw a bounding box around our schematic
symbol so that everything is neatly grouped
together. Click the ‘Add a rectangle’ tool, and draw
a rectangle over your design. Click the Save icon

in the top-left corner of the screen, and then close
the Symbol Editor window. You can now go into the
Schematic Editor and use the ‘Add a symbol’ tool to
find and add your first custom symbol.

Next, we need to make a new footprint library
and footprint for the Pimoroni BMP280 module. To
begin, we first need to open the Footprint Editor
(Figure 4). This is available either from the main
KiCad project window, or indeed can be launched
from the ‘Create, delete and edit footprints’ tool icon
in the PCB Editor. Similar to the Symbol Editor, once
you have the Footprint Editor open, the first thing to

do is to click File and then select New Library from
the drop-down menu. Again, you can select to add
a new library to the Global or Project table – select
Global and name your library. Once the new library
appears in the list, highlight it and then click File
and select New Footprint. A dialog appears and
we can name our new footprint. We called ours
‘Pim_BMP280_Module’.

We also need to select from the drop-down
menu whether this is an ‘SMD’ or ‘Through Hole’
component. Selecting ‘Through Hole’, we are
now ready to add the pads and other parts of our
footprint. Similar to the PCB Editor, we can set the
grid resolution and, as the pins on the BMP280
module are spaced at a standard 2.54 mm pitch,
it is worth setting the grid to this initially to allow
us to easily place the pins. Next, click the ‘Add a
pad’ tool icon. We want to end up with five pads

Note that if you
use a schematic
symbol or a footprint
module from an
external library,
once it is saved in
your KiCad project
file, the symbol/
footprint is stored in
that project. If you
moved to another
machine with KiCad
that didn’t have the
custom libraries
added, you would
be able to open the
project as usual.

QUICK TIP

Give your symbol a name that
will be used in the library list
– make it a useful name that

reflects the part

”
”

Figure 4
The Footprint Editor
window can be used
to create or edit
component footprints

Figure 5
Editing the pad size
and shape using the
Pad Properties menu

KiCad libraries, symbols, and footprints

SCHOOL OF MAKING

56

labelled 1 to 5 moving from left to right. The easiest
way to do this is to count two grid spacings out from
the centre datum line and then click to place pad 1.
Notice that the ‘Add a pad’ tool then increments the
pad number so the next previewed pad is labelled
‘2’. Move one pad to the right of the pad you just
made and click again. Continue to do this until you
have a neat row of five pads.

Reverting to the general ‘Select items’ tool,
hover over pad 1 and press the E key to open the
‘Pad Properties’ dialog (Figure 5). In this window
you can change the geometry of the pad, the
size of the hole, and many more options. We’ve
found that increasing the pad size slightly from the
default, and increasing the hole size, works well for
soldering header pins between modules. You may
have your own preferences, but we edited each
pad to be a 1.8 mm circle with a 1 mm hole. With
the pads created, we next need to add a silkscreen
item that represents the physical area the module
will occupy. Many components will have physical
package dimensions listed in their datasheet, but
that’s not always the case with modules that are
really designed for prototyping and breadboard use.
In these cases, some investigation with a pair of
callipers is a good approach to get some dimensions
of the package. Measuring the Pimoroni BMP280,
we realised a 19 mm square area with the pin pads
2.54 mm from the edge gave us a slightly oversized
and therefore safe margin for the module. Select
the ‘F.Silkscreen’ layer on the right-hand side of the
screen and then use the ‘Draw a rectangle’ tool to
draw this and position it correctly. Finally, let's add

USB ON BOARD
We’ve now nearly got everything we need to make the Stamp and BMP280 board! You
might have noticed in the main image that we have added a USB edge connector directly
onto the PCB. This is a cheap and cheerful approach to adding USB without adding any
extra components, although we will need to add around 1 mm of material to the back
of the 1.6 mm thick PCB in this area to actually make the USB connector fit. The reason
we added this is to highlight another way of using libraries and components from other,
suitably licensed, KiCad projects. In this example we found a project, the USB Armory,
which, in an early Mk1 version, used the USB edge connector on PCB approach. The
USB Armory is an open-source project and we can download the project repository here:
hsmag.cc/USBArmory. Once downloaded, unzip the folder and use KiCad to navigate to
the hardware folder, then mark-one, and then open the file armory.kicad_pro. Once open,
move to the PCB Editor and select the USB edge connector footprint and press E. In the
Footprint Properties window, click the Edit Footprint button. This should open the footprint
in the Footprint Editor. You might get a warning that the footprint was made with an earlier
version of KiCad, but saving the footprint in the editor should clear this warning. You should
see that the footprints pads and the silkscreen line (which doubles as a guide for the edge
of the PCB board cut out) are now opened in the Footprint Editor. Across the top of the
editor you should see a warning that you are currently only editing the footprint within the
current project. You can use File then Save As to rename and save this footprint into your
custom library that we created earlier. As that library is created on the Global table, this
USB edge connector footprint is now available to use in any project. We edited our version
a little, labelling the pads more clearly, and saved it to our library. Making a note of each
pad's connectivity, we then repeated the earlier approach to create a custom symbol in
our library to represent the USB connector in the schematic.

If you aren’t in the
Schematic Editor,
you can open the
Symbol Editor from
the main KiCad
project window.

QUICK TIP

Many components will
have physical package

dimensions listed in
their datasheet

”

”

Figure 6
Using Inkscape to
create an accurate
graphic for the PCB
edge-cut geometries

http://hsmag.cc/USBArmory

57

FORGE

another square on the ‘F.Courtyard’ layer that sits
just slightly outside the silkscreen layer square we
just created. You can achieve this by setting the grid
to a very small spacing value such as 0.01 mm and
then drawing a rectangle away from the silkscreen
rectangle to avoid it snapping. Make the new square
19.4 mm and then you can use the M key to move
the square into position. This new square in the
front courtyard layer provides a service called the
‘DRC’ or ‘Design Rules Checker‘ with a boundary
that shouldn’t be overlapped. This means that later
in the process, if a component is overlapping, this
boundary on the PCB when we run the DRC will be
highlighted as an issue. We’ll look at using the DRC
in the next part of this series.

To create the board outline, we decided to not
use the graphical tools in the PCB Editor but, rather,
we imported an outline we drew in the free and
open-source Inkscape application (Figure 6). Whilst
the included KiCad tools are excellent, Inkscape
can offer some advantages when designing graphic
components. We drew a simple outline object
for the board in Inkscape, saved it as an SVG file,
and then imported it into KiCad. To do this, click
File and then select Import > Graphics… from the
drop-down menus. In the Import Vector Graphics

File dialog, you can navigate to the file and select
the working layer to import to. Setting the graphic
layer as ‘Edge.Cuts‘, notice that we can also set an
Import Scale value. In this instance we designed the
board outline to be the correct size in Inkscape, so
we leave the import scale at 1.00 so that it imports
at its original size. This function is useful. However,
if we have an oversized graphic or logo to import to
a silkscreen layer, like the HackSpace logo, we’ve
reversed in Inkscape and then imported it onto the
back silkscreen layer. We’ll look at creating PCB
artwork and components in Inkscape in more depth
later in this series.

Finally, another technique that we've used on this
board is to create flooded copper zones attached to
a net label. This is an excellent way of automatically
connecting groups of common connections (see
Figure 7). You can create complex systems with lots
of different flooded areas with differing connectivity,
but in this project we have just used one flood on
the front copper surface that connects all pads
attached to ground. To do this, once the board is laid
out, we used the ‘Add a filled zone’ tool. When you
select this tool, you then left-click to start to draw a
fill area over your board design, ensuring you are on
the correct layer. A dialog appears and you can select
the net connection from the list, so we selected
‘GND’ (Figure 8). Leaving all the other settings at
the default values, we drew a rectangle over our
board. Don’t worry too much about accuracy as the
flood will only appear inside the edge-cut geometry.
Drawing three points of your rectangle you can
then right-click and select ‘Close outline’ from the
drop-down menu. The rectangle (or other shape you
drew) should now flood, and you should see that
all the previously disconnected GND pads are now
connected together – neat!

Note that the
schematic symbol
pin numbers
directly link to the
assigned footprint
pad numbers, so
you must make
custom symbols and
footprints match.

QUICK TIP

Figure 8
Selecting the net
from a list to which
the flooded copper
zone will connect

Figure 7
Flooding the board to connect all the GND connected pads

50

KiCad: using a PCB assembly service

SCHOOL OF MAKING

Create KiCad projects that can be fully assembled
by popular PCBA companies

e’ve covered a lot in the
previous three parts of this
series. If you’ve worked
through them all, you should
be at a point where you can
create simple board designs

pretty well. In the next part of this series, we are
going to look at a more complex board, building a
minimal RP2040 board example. The RP2040 chip
itself comes in a QFN-56 package, and whilst that can
be soldered at home using reflow or hotplate soldering
techniques, for many, that will be a challenge too far.
To avoid this, we are going to use a PCB assembly
(PCBA) service.

There is a lot to look at in making an RP2040-based
board, so in this article, we will prepare a simpler
design for manufacture to help us learn the PCBA
approach. Designing for PCBA adds complexity in that
we have to create numerous files, not only defining

KiCad: using a PCB
assembly service

the PCB design, but also choosing and placing known
components on the board. These components have to
be available to the PCB assembly house, which again
adds a little complexity. It’s fair to say the first few
times you do this process, it will seem like a lot of
work compared to simply uploading your project file to
OSH Park for it to create and send you a PCB!

So, for this exploration of PCBA services, we’ve laid
out a small design in KiCad for a little H-bridge circuit
prototype using four N-channel MOSFETs. We aren’t
going to step through the board design, particularly
as we’ve covered the approach in earlier parts of
the series. You can check out the project files here:
hsmag.cc/issue69.

We’re going to use the popular and reasonably
affordable JLCPCB assembly service to manufacture
and assemble our boards. This means that we need to
consider what parts we are going to use on our board,
as each part needs to be available in the JLCPCB

W
Jo Hinchliffe

@concreted0g

Jo Hinchliffe is a
constant tinkerer and
is passionate about all
things DIY space. He
loves designing and
scratch-building both
model and high-power
rockets, and releases the
designs and components
as open-source. He also
has a shed full of lathes
and milling machines
and CNC kit!

http://hsmag.cc/issue69

51

FORGE

parts library. The first thing to do is to head over to
JLCPCB (jlcpcb.com) and register for an account.
You can explore the JLCPCB parts library using the
search function and filters – you will see parts’ cost
and availability. In fact, you can also advance purchase
components so that they are held in your own virtual
warehouse ready to be used on your board designs
in the future. One thing of note is that available
components fall into two distinct groupings: ‘basic
parts’ and ’extended parts’. Basic parts will be added

to your board at the price listed. So, if you are adding
five basic part resistors at 0.07 dollars each, then they
will cost 0.35 per board. However, if that part was
listed as an extended part, then that part will still cost
the same unit price, but there will be a one-off $3
setup cost of including that part in your project, as the
part will have to be manually retrieved from storage
and loaded into the pick-and-place machines.

As you peruse the JLCPCB parts library, make sure
that if you spot a component that you are likely to use,
you make a note of the part number – these usually
start with the letter ‘C’ and are listed on the main
component landing page. For our small H-bridge
board example, we are only interested in having

PCB ASSEMBLY
In earlier parts of this series, we used OSH Park to
manufacture our PCBs – they make it super-easy by
accepting KiCad PCB file upload directly. If you want
to use other PCB fabrication services, or indeed as
we are in this article, a PCBA service, it’s much more
likely you will need to plot Gerber files for your PCB
and also files containing drilling information.

Gerber and drill files have some variables, and
your fabrication service should give you some
information regarding what they need in terms of
Gerber files and drill files. For example, JLCPCB has
a page (hsmag.cc/gerberdrillkicad) which outlines
the settings required by the Gerber plotter in KiCad
that their service needs. It’s a little out of date in that
the screenshots are from KiCad 5.19, but you can find
all the same options on the KiCad ’Plot‘ dialog. To
access the latter, you click File > Fabrication Outputs >
Gerbers from the PCB Editor.

One thing of note is that plotting Gerbers creates a
bunch of files for different layers of your PCB design,
so make sure that at the top of the ‘Plot’ dialog, you
create a folder for your Gerber files or else they
all end up mixed into the main root folder of your
project. You can also create the drill file from the
‘Plot’ dialog after you have plotted your Gerber files.
Clicking the ‘Generate drill files’ button will launch a
drill file dialog. For JLCPCB, place your drill file into
the same folder as you did your Gerber files and,
finally, compress this folder into a zip file for upload
to JLCPCB.

Again, most PCB fabrication houses will have
guidance on what format they require – JLCPCB list
the settings needed on the link above. Don’t worry too
much if you upload something that doesn’t work: it will
show as an error and you can always ask the online
chat service for help or guidance as to what settings
to change.

These components have to
be available to the

PCB assembly house, which
again adds a little complexity

”
”

Figure 1
Our PCB design
successfully assembled
by the PCBA service

http://jlcpcb.com
http://hsmag.cc/gerberdrillkicad

KiCad: using a PCB assembly service

SCHOOL OF MAKING

52

JLCPCB add the SMD components, so we chose
some 10 K resistors (part number C49122), and
the four MOSFETs are going to be AO3400 chips
(part number C20917) (Figure 2). We need to add
these details to an extra field added to the Symbol
Properties so that later, when we generate a bill of
materials (BOM), these
specific components will
be identified. In order for
JLCPCB to ignore the
through-hole components
in our design, we’ve
simply not added this
extra LCSC field to their
schematic symbols, and
therefore they won’t be
included in the assembly process later on.

To add these details, in the Schematic Editor,
highlight a component and press the E key to open the
Symbol Properties dialog. Click the + button, which is
labelled ‘Add field’ when you hover over it (Figure 3).
You should see a new field line appear. In the ‘Name’

column, we need to label this field ‘LCSC’, and then
in the ‘Value’ column, we need to add the CXXXXX
number we researched for that component. For
small projects, such as this example, you can do this
manually for each schematic symbol. You need to do
this for every component you expect JLCPCB to add
to your board; you can’t just add this field to one 10 K
resistor and expect it to work out to add the same
part for the others. An alternate approach for larger
projects is that you can edit the symbol at the library
level, or copy the symbol to a custom library with the
LCSC field and number populated at the symbol level.
This means that whenever you place that custom
symbol in the schematic, you have the correct LCSC
part number ready for the BOM. Before creating the
BOM, you still have to assign the footprints to the

symbols as you would for
any PCB design.

KiCad has a tool to
generate a BOM – the
tool icon is accessible
from the Schematic
Editor and shows
‘Generate a bill of
materials from the
current schematic’ when

you hover over it. If you click this tool, it will open
the Bill of Materials dialog. On the left-hand side of
the dialog, you’ll see an area titled ‘BOM generator
scripts’. There are some scripts already installed, but
there is an excellent script written by arturo182 which
specifically creates a JLCPCB-formatted BOM. To use

You need to do this for
every component you

expect JLCPCB to add to
your board

”
”

Figure 2
Searching for parts
in the JLCPCB
part library

Figure 3
Adding an extra
LCSC field to
Symbol Properties
enables a correct
BOM to be created

We covered
creating and editing
custom schematic
symbols and
libraries in the third
part of this series.

QUICK TIP

53

FORGE

this script, go to the GitHub repository, then in the
upper right-hand corner, you will see a Download ZIP
button. Click it to download, then extract the zip file
(Figure 4). In the Bill of Materials dialog, click the +
button and navigate into the folder you just unzipped
and select the bom2grouped_csv_jlcpcb.xsl file.
Clicking the OK button will add this handy script to
the list.

BOM SQUAD
Once your board is complete and you have all
the LCSC numbers attached to the schematic
symbols, you can reopen the BOM dialog. Select the
‘bom2grouped_csv_jlcpcb’ script, then click Generate
to create a BOM that the JLCPCB service will be able
to use (Figure 5).

The final piece of the PCBA puzzle is to generate
a footprint position file, also referred to as a centroid
file. Similar to the BOM file, this is essentially a
spreadsheet which contains details of each placed
component, showing both coordinates and the
rotational angle of the part. To generate this, in the
PCB Editor, we need to select File > Fabrication

Outputs > Component Placement. Make sure
that your settings match the dialog box shown in
Figure 6. Note that if your project contains through-
hole components that you want JLCPCB to include,
you need to uncheck the ‘Include only SMD footprints’
option and include the LCSC numbers for those
through-hole parts in the BOM. Note that for this
component footprint POS file and the BOM file we
generated earlier, we don’t want those files inside the
zip file of Gerbers, as they are uploaded separately.
Once you are ready, click the Generate Position File
button. Notice that this will generate two POS files:
one for the upper layer and one for the lower layer. As
our design is single-sided, we are only interested in –
and later, need to upload – the upper layer file. With
the upper layer POS file generated, we need to make
a few alterations to the spreadsheet column header
titles for it to work properly for JLCPCB. Open the file
you have generated in your spreadsheet program. We
use LibreOffice Calc, but MS Excel or Google Docs

Figure 4
Downloading the
custom JLCPCB BOM
generator script

Figure 5
The BOM dialog
 with the custom
JLCPCB generator
script added
and selected

Figure 6
The Generate
Placement Files
dialog

KiCad: using a PCB assembly service

SCHOOL OF MAKING

54

should work. We need to make the following changes:
the title of the first column, Ref, should be changed
to Designator; PosX and PosY should be changed to
Mid X and Mid Y; Rot should be changed to Rotation,
and finally, Side should be changed to Layer
(Figure 7). Save the POS file with these alterations
– we now have everything we need to upload to the
JLCPCB service.

With everything ready,
we can now head to the
JLCPCB website. Click
on the Standard PCB/
PCBA tab to upload our
Gerber zip file. After a
short upload, you should
see a render of the upper
and lower sides of your
board in the preview window (Figure 8). You can
make changes to the board type, material, thickness,
and more on this initial page. However, apart from
changing the colour of the board to yellow, we left
everything at the default setting.

At the bottom of the page, you can click a button to
add/expand the PCBA services. In Figure 9, you can
see that we have opted to have the top side
assembled only (as we only have components on this
side). We’ve also ensured that the Edge Rails/Fiducials
entry has the Added by JLCPCB option highlighted.
This indicates that for our very small boards, JLCPCB

services will create any
needed panel layouts.
With all that selected,
click Next.

You’ll get another larger
preview of the PCB layout
generated from the
Gerber uploads. Check it
carefully and then click
Next to move to the next

tab. This will look like Figure 10. It’s reasonably
self-explanatory. Click the Add BOM File button and
upload the BOM file we created earlier, then click the
Add CPL File button and upload the top layer CSV
positional file we made and edited earlier. Clicking

You should see a render of
the upper and lower sides

 of your board in the
preview window

”
”Figure 9

The preliminary
choices for the
PCBA service

Figure 8
If the Gerber
zip file uploads
correctly, you’ll
be rewarded with
the first of many
preview images
of your board

Figure 7
Using LibreCalc to
edit the generated
positional file
column titles

55

FORGE

CASTING A NET
In the schematic for our H-bridge circuit, you’ll notice that we haven’t directly wired
everything together and that the connections between the gate pins on each MOSFET
are labelled ‘A’ or ‘B’. In turn, there are also two pins on the connector marked ‘J1’
labelled ‘A’ and ‘B’. These are ‘net labels’ and, to make one, you simply click the ‘Add
a net label (L)’ tool icon. You then left-click in the schematic and the ‘Label Properties’
dialog will appear. Into this you simply type the name of your net label, so, for example,
type the letter ‘A‘. You can change the font and size, but when you are happy, click the
OK button and you can now place your ‘A’ label into the schematic. Notice that it has a
small square connector. You can then connect a wire to the ‘A’ label as you would to any
other component using the ‘Add a wire’ tool. You can recreate another ‘A’ label using the
same method to attach to the other end of your wireless connection, or you can copy
and paste the original net label. If you have more complex descriptive net label names,
it can be a good idea to use copy and paste as if you create a net label with a spelling
mistake, it will not connect and may take you a while to discover the error. In this simple
H-bridge example, we didn’t really need to use this technique but, in the next article with
a more complex design, using net labels can really help to keep a schematic cleaner and
more readable.

Next, these will be uploaded and
processed, which may take a few
minutes, and you should see a
render with the board and the
components placed.

SPIN ME ROUND
Often, at this point, you will find
that components are not rotated
correctly on the footprints. There
are two ways to correct this, if
your components are at standard
angles, you can left-click to highlight a component in
the render image and, when highlighted, use the
rotation tools above the PCB render in the JLCPCB
web page. You can continue to do this until your design
looks correct. Clicking Next will save these orientations
and take you to the Add to Basket ordering page.
Whilst this is a fine approach, another approach is to
open the positional file we created and uploaded offline
and edit the rotational value of the components that
have appeared incorrectly in the render. In our
experience, either way is fine, and the JLCPCB
engineers will question if a component isn’t sitting on a
footprint correctly.

All that’s left to do is to add the order to your
shopping basket and pay! Once the order is confirmed
and paid, you get regular updates on the order listing
and, if it’s a complex design, it’s worth checking back
into your account four to six working hours after
placing the order to check the DFM analysis regarding
component placing in the order history details.

Once everything is ordered, all you have to do is
wait! However, not for that long! We started this
simple H-bridge motor driver design in KiCad and
had the assembled PCBs (Figure 1) in our hand eight
days later.

Figure 11
Correcting footprint rotational
position can be done in-browser
as part of the JLCPCB order
process, or you can edit your
positional file offline to create
correct values

Figure 10
Adding the BOM files and the positional file we made earlier

Designing an RP2040 board using KiCad

SCHOOL OF MAKING

52

n the previous parts of this series, we’ve
worked through the basics of making PCB
boards from schematic to board layout,
and we’ve learned a variety of skills and
approaches along the way. We built on
this by exploring how to use KiCad and a

PCB assembly (PCBA) service to not only have the
PCB manufactured, but to also be populated with
components and supplied to us fully assembled
(Figure 1). If you’ve worked through the earlier parts,
we now have enough skill and knowledge to tackle
a more extensive project like creating an RP2040-
based board.

RP2040 is a great target for PCB projects that will
be assembled using industrial approaches. The bolder
amongst us might successfully be able to solder up
the QFN (Quad Flat No-leads) 56 package at home,
but it’s at the edge of where PCBA starts to make a
lot of sense. Many commercially available boards that
use the RP2040 are manufactured using PCBs with
four or more layers. Of course, it’s possible to do this
in KiCad, but for many of us, four-layer boards can be
difficult to debug or correct if something goes wrong.

Fortunately, for simpler boards, two layers is enough
to get our microcontroller running and break out the
features we need.

When the RP2040 was released, so too was a
stack of excellent documentation, including the
very readable ‘Hardware design with RP2040’
(Figure 2). The PDF is available to download from
hsmag.cc/hardware_design_rp2040.

This document shows an example of a minimal
RP2040-based board, a two-layer design, and
then describes various aspects of the design and
considerations. There is even a KiCad project file for
the design. It’s a great idea to download the project
file and take a look around it (Figure 3). In this
article, we are going to replicate this board design,
but we will start from a blank project rather than use
the one supplied.

Starting from scratch means that it’s easier to
adapt this project to your own needs. We’ll also
tweak the project because currently, JLCPCB
doesn’t supply some of the exact components used
on the Raspberry Pi example. The Raspberry Pi
example was built in a previous version of KiCad
and uses in-house schematic symbols for the
RP2040. Since then, the RP2040 has become a
standard library component within KiCad, but some
of the connections on the RP2040 schematic symbol
are already made at a symbol level (like common
power pin connections), so it makes sense to use
the built-in KiCad symbols and footprints. With that
all said, we aren’t going to step through every stage
of designing this board as we’ve learnt the approach
in the previous parts of the series, so this article

Figure 2
The excellent
Hardware design
with RP2040
documentation from
Raspberry Pi

Build a custom microcontroller board and get it assembled

Designing an RP2040
board using KiCad

I
Jo Hinchliffe

@concreted0g

Jo Hinchliffe is a
constant tinkerer and
is passionate about all
things DIY space. He
loves designing and
scratch-building both
model and high-power
rockets, and releases the
designs and components
as open-source. He also
has a shed full of lathes
and milling machines
and CNC kit!

http://hsmag.cc/hardware_design_rp2040

53

FORGE

looks at things we consider specific to creating an
RP2040 board.

We’ve tended to emulate both the schematic
layout and the PCB layout of the minimal design
example and our project. Partly this is because the
PCB layout has neatly solved a lot of the layout
complexity, but also it allowed us to compare the
project as we worked through building our own.
With the USB symbol (and footprint) sourced, we
added the RP2040 component from the KiCad

library. We added resistors and a pair of labels
to connect the D+ and D- to the correct pins on
the RP2040. The documentation states that we
need to create the traces for these connections
with accurate dimensions and clearances. We’ll
achieve this by assigning a custom net class to
the connection, or ‘net’, so that when we draw
these traces in the PCB Editor, they should be
created correctly.

In the Schematic Setup dialog in the Schematic
Editor, click the + button in the uppermost Net
Classes window, add a new net class, and give it
a name. Note that local net class names within a
project should start with a ‘/ ’ – we went with
/USB_lines. Select a wire segment that connects
the RP2040 D+ or D- pin out to the USB_D+ or
USB_D- label that we added, and then right-click.
Select Assign Netclass from the drop-down menu. In
the Add Netclass Assignment dialog box, you should
see the selected label USB_D+ and, to the right of
it, a drop-down menu to select the net class – this is
currently ‘Default’, but if you click down, you

Figure 1
A fully assembled
and functional
RP2040-based board

Figure 3
The Hardware
design with RP2040
documentation also
includes a KiCad
example project

Starting from scratch
means that it’s easier

to adapt this project to your
own needs

”
”

Reading through the
Hardware design
with RP2040 PDF a
couple of times is
beneficial to laying
out an RP2040-
based project!

QUICK TIP

Designing an RP2040 board using KiCad

SCHOOL OF MAKING

54

should be able to see the ‘USB_lines’ net class that
we added earlier. Select this, then close the dialog
box. Repeat this for the USB_D- label (Figure 4).

When you get to opening the PCB Editor, you
can use the Board Setup tool (in the same positions
as the Schematic Setup tool) to adjust the net
class variables. This includes the track width, track
clearance, via size, and more (Figure 5). We are
predominantly interested in the track width and the
track clearance to create the track lines that we
need for the USB lines – this information on track
geometry was taken directly from the Hardware
Design with RP2040 documentation (page 10).

We laid out the power regulator and found a
similar device to the minimal design example;
however, the JLC component, C26537, had an extra
pin and was in the SOT-223-3 package. We have a
matching KiCad library footprint, but it was easier
to just make a quick custom schematic symbol to
ensure that the pin numbering was correct and
matching (Figure 6).

One area that challenged us was, when looking
up the components that the minimal design example
project used for the crystal, we found no similar
device available on the JLCPCB component library.
Using a consummate hardware hacker’s approach,
we researched what other open-source RP2040-
based designs used, making sure to limit the list
to projects we knew worked well. Having used
Solder Party’s Stamp in an earlier part of this series,
we checked out its design. It looked simple and
straightforward with just two 12pF capacitors, and
on checking JLCPCB, the crystal part was available
as part number C521567. We again used the
EasyEDA conversion website (see box, opposite) to
create a custom footprint (Figure 7, overleaf).

Laying out the decoupling capacitors in the
schematic is straightforward, but we’ve taken
advantage of the KiCad text tool to add notes,
occasionally acting as reminders for important
information. In the Hardware design with RP2040
documentation, for example, it shows that the
1uF capacitors should be placed close to pins 44
and 45 on the RP2040, so it makes sense to add a
schematic note as a reminder (Figure 8, overleaf).

Do take care when
creating custom
footprints to ensure
that the component
pin number is
compatible with your
schematic symbol
and vice versa.

QUICK TIP

Figure 4
Setting up and
assigning a net class

Figure 5
Setting the net class
variables for our USB
lines in the Board
Setup dialog in the
PCB Editor

55

FORGE

The flash memory chip used in the minimal design
example is available at JLCPCB and, as such, we
went with the same design. In the Hardware design
with RP2040 documentation, they have added a
footprint for an optional pull-up resistor but found,
with this chip, that it wasn’t needed, so we omitted
that part of the design. The important thing about
the flash chip and the associated traces on the PCB
is that it all sits over a continuous ground plane.
This adds some head-scratching with the lay up of
a two-layer board, but again, use our project or the
Raspberry Pi project as an example of the routing.

As we aren’t aiming for any particular use case
with this example, we simply broke out all the pins
to a pair of headers that we will place on each side

EASILY CONVERTED

When designing for JLCPCB, even at the schematic level, you need to be thinking about
what component and footprint you will be using. For our RP2040 board, we wanted to use
a surface-mount micro USB-B socket where all the USB chassis and ground points are
on the upper layer – this means we could keep all the assembly as SMD components. As
such, apart from the pin headers/sockets, the units would be fully assembled by JLCPCB.

Looking through the LCSC component library, we opted for the C132560 component.
JLCPCB often supplies schematic and footprint symbols for EasyEDA, and, in the case
of the component footprint, we can use a handy online tool to convert it into a KiCad
component footprint and add it to our libraries (we covered working with custom libraries
and components in the third part of this series – hsmag.cc/issue68).

To make use of this converter, you’ll need to set up an EasyEDA account (easyeda.com).
Click the link that says ‘PCB Footprint or Symbol’ on the component page on the JLCPCB
library website, then click the Free Trial button underneath the pop-up window that shows
the component symbol and footprint. After setting up a login, you should see a browser-
based EasyEDA project with just the footprint of the component loaded. In the browser,
go to File > Export, and then select EasyEDA … from the list. This should then download
a small JSON file. Navigate to hsmag.cc/EasyEDA2KiCad, click the Load EasyEDA File
button, and then upload the JSON file. The website will automatically convert the EasyEDA
project and will then download a KiCad footprint file to your Downloads folder. As a side
note, we also used this approach for the crystal package we used on the board design.

Sadly there is no conversion available for the schematic symbols; however, with some
careful checking of pin numbers to ensure compatibility, we found a built-in KiCad USB
schematic symbol that worked well with the footprint. Again, though, if you’ve worked
through all parts of this series, you should be happy to create your own custom symbol.Above

LCSC provide EasyEDA symbols for most of their components
so you have to convert these before you can use them in KiCAD

Figure 6
Setting up the power
regulator is simple
once the target
JLCPCB components
are identified

We simply broke out all the
pins to a pair of headers
that we will place on each

side of the board

”
”

http://hsmag.cc/issue68
http://easyeda.com
http://hsmag.cc/EasyEDA2KiCad

Designing an RP2040 board using KiCad

SCHOOL OF MAKING

56

of the board. With the schematic largely complete,
we moved over to the PCB Editor to begin the layout
and routing.

One interesting aspect of the board design, that
we haven’t looked at yet, is that it has numerous
different voltages which each have their own copper
flood zones. Making these is similar to how you
make any other copper flood, as we have done
in previous boards, but you need to set a priority
value so that the different floods know how to flood
separately. So on the top layer of our board there is
a general 3V3 flood, a flood connected to the VBUS,
which is the 5 V input from the USB to the voltage
regulator, and there is a small 1V1 zone inside the
footprint of the RP2040. Notice in Figure 9 that we
have assigned the 1V1 flooded area priority 2, the
VBUS area priority 1, and the general 3V3 priority 0.
This essentially shows that they are separate areas.

Components-wise, we decided that for the
resistors and the majority of the decoupling
capacitors, we would go for 0402 packages. Again,
we wouldn’t make this choice if we were planning to
assemble this board by hand, but with the assembly
engineers and robots doing this fine work, we might
as well use the tiny packages. It’s less common for

TOOLING HOLES
When ordering assembled PCBs from JLCPCB
services, you might need to consider tooling holes.
These are small holes placed in your design layout
that JLCPCB machines use to locate and hold the
boards when they are being assembled. You can
add these yourself, or you can omit them, knowing
that JLCPCB will place them for you. It’s fair to say
that JLCPCB engineers will place the holes sensibly
and won’t plonk one through a trace or in the middle
of a component footprint; however, you might want
to manually add them into your design so that you
decide where they are finally placed.

The rules are that a minimum of two, preferably three,
holes should be placed in the PCB design, and they
should be placed at opposite corners – as far apart
as they can practically be. The holes should be
1.152 mm diameter circular non-plated holes with a
0.148 mm solder mask expansion. The simplest thing
we found to do for projects where we want to add
the tooling holes is to create a custom component in
our KiCad libraries that we can drag into and place in
our design.

To make a tooling hole component footprint in the
Footprint Editor, you need to create a new footprint
and then add a single pad. Selecting the pad, click
the E key to edit and enter the Pad Properties dialog.
On the first ‘General’ tab, set the pad as ‘NPTH,
Mechanical’ in the pad type – NPTH stands for
‘non-plated through-hole’. Staying on the General tab,
make sure the pad shape is set to circular and the
diameter is 1.152 mm. Finally, click onto the second
tab in the Pad Properties dialog called ‘Clearance
Overrides and Settings’. On this tab, set the solder
mask expansion to 0.148 mm. Save this as a footprint
and you can place them when needed into JLCPCB-
oriented designs.

Figure 7
Due to JLCPCB not stocking the crystal that the RP2040
documentation recommends, we needed to rethink this
part of the circuit

Figure 8
Laying out the decoupling capacitors in the Schematic
Editor is largely straightforward

57

FORGE

the very tiny packages of capacitor to be of accurate
value as they increase in capacitance. So, although
JLCPCB does offer components that claim 10uF
in 0402 packages, we went with a more common
larger 1206 variant.

We’ve largely covered everything specific to this
project in this article. If you’ve worked through the
previous parts of this series, you’ll be familiar with all
the other aspects of the process. It’s definitely worth
working through some smaller projects (like the
small H-Bridge design in the last part of the series
– hsmag.cc/issue69) to get used to the JLCPCB-
specific processes. We’d also reiterate that reading
Hardware design with RP2040 a couple of times
before tinkering with an RP2040 board is time well
spent. Finally, be warned, having fully assembled
and hopefully functional boards delivered to your
door is highly addictive! The KiCad files for this
project can be found at hsmag.cc/issue70.

Above
Our completed layout in the PCB Editor

Figure 9
Setting up different
priorities to allow
different zones
to coexist

With the assembly
engineers and robots doing
this fine work, we might as
well use the tiny packages

”
”

http://hsmag.cc/issue69
http://hsmag.cc/issue70

KiCad: schematic organisation and hierarchical sheets

SCHOOL OF MAKING

48

n the last issue, we laid out our largest
project so far – an RP2040 minimal layout
example and, in the next issue, we want to
add to this design. However, the schematic
is already quite full and, if we’re not careful,
the whole thing could become unmanageable.

Let’s take a look at how we can keep things clean,
tidy, and easy to work with.

If you view last issue’s project (hsmag.cc/issue70),
and jump into the Schematic Editor, it looks quite
cramped (Figure 1). One of the first things we can
do is to simply increase the schematic size. Navigate
to File > Page Settings and, in that dialog, you can

swap the page size, currently at A4. Changing this
to A3 will give us plenty more room. Whilst we are
in this Page Settings dialog, we can add some detail
to the Title Block fields. This is the lower right-hand
corner collection of text boxes that list the title,
revision issue date, and more. Whilst we don’t always
practise what we preach, clear titles and revision
labels and dates are really useful if you plan to
publish your project or use the schematic as part of
documentation (Figure 2).

With our schematic size increased and neatly
titled, we can look at other ways of organising our
schematic content. One approach that we have seen,

Figure 1
Our schematic from
the RP2040 minimal
example project

How to get your sheets in order before starting a larger project

KiCad: schematic
organisation and
hierarchical sheets

I

Jo Hinchliffe

@concreted0g

Jo Hinchliffe is a
constant tinkerer and
is passionate about all
things DIY space. He
loves designing and
scratch-building both
model and high-power
rockets, and releases the
designs and components
as open-source. He also
has a shed full of lathes
and milling machines
and CNC kit!

http://hsmag.cc/issue70

FORGE

49

that some people like, is to create graphic boxes
around different subsections of a project’s circuits.
For this we can use the ‘Add a rectangle’ tool, again
in the lower right-hand side of the screen. You might
need to use the selection tool to select and move
parts of the schematic into a position where you can
completely draw a rectangle around them.

To draw a rectangle using the ‘Add a rectangle’
tool, you do a single left-click in the start position (a
corner of your rectangle) and then move the pointer
to the opposite corner position you require. Once the
rectangle is drawn, clicking on it with the selection
tool, you can either grab the anchor points to change
its dimensions, or press M on the keyboard to move
the rectangle as you would any other object in the
Schematic Editor. With a section of your schematic
now encapsulated in a rectangle, we can simply
use the ‘Add text’ tool to create and then to place

Figure 2
Increasing the
schematic page size
and adding clear
labelling is a
good start to
keeping organised

Figure 3
Adding boxes and
text labels can help
organise sections of
complex schematics

Clear titles and revision
labels and dates are really
useful if you plan to publish

your project

”
”

KiCad: schematic organisation and hierarchical sheets

SCHOOL OF MAKING

50

labels into our boxes (Figure 3). We did this in the
original RP2040 minimal example project, in the last
section of this series, when we added notes to place
capacitors close to certain points etc. What we didn’t
make note of is that, new to KiCad 7, we can use any
font for our text, allowing us to move away from the
default KiCad fonts and bring a little of our own house
style to our schematics.

ROVING ROBOT
We’re planning to use last month's RP2040 example
project as a base for a larger project. We’re aiming
to make a simple robot rover design with the main
chassis of the robot being a PCB with all the essential
components mounted on that single board. We want
to keep our original RP2040 board project, so we

need to make a copy of our project to develop into our
robot rover platform. This is one way we can almost
use KiCad projects in a modular fashion.

To copy a project in the original project go to
File > Save As, then select or create a new folder
to save the project to. Insert a new name for the
new project copy in the Name dialog box, then click
Save. Although not completely necessary, it’s not
a bad idea to then open the new project folder in a
file browser and delete any unneeded files for the
new project. For example, if you have a Gerber file
folder, these probably won’t be relevant to the new
project. Any backup files can also be removed as you
would probably return to the original source project,
if required, rather than use a backup from this new
branched project.

The basic premise for our robot is that it is going to
have four wheels, all of which are driven by N20-style
motors. This gives us options down the line in that
it can run with normal style wheels and tyres, but
we are also interested in mecanum wheels, which
need to be driven individually to create the interesting
sideways and diagonal motions mecanum wheels
are known for. This means that a primary part of
the design is to add four motor driver circuits to our
RP2040 board, one for each wheel. Again, considering

A SPLASH OF COLOUR
You can add images to schematics and, whilst you
can place images anywhere on any page, a common
use case for this is to add a company logo to the Title
Block area. The Schematic Editor supports a wide
range of image formats, including PNG, JPG, TIFF, BMP,
and many more. Usefully, on import you can rescale
the imported image. This is useful as you can import a
larger, higher DPI image and then scale it down to fit
the box. In the image, the dog logo has been created in
Inkscape and exported as a PNG file with a transparent
canvas. The image as exported is sized at around
700 × 500 pixels and has been exported at 300 dpi. This
means that the image is good enough quality when
scaled down to fit into the title block, but is still a
comparably small file size at around 16kB.

To add your image to the schematic, simply click the
‘Add a bitmap’ tool icon on the lower right-hand side
of the screen, and navigate to your chosen image file.
Once the object is imported, you can move it and scale
it whilst maintaining its aspect ratio by dragging the
corners of the image bounding box.

Figure 4
Adding a name for a
new hierarchical sheet
and a file name for the
new hierarchical sheet
schematic file

Right
Our empty
hierarchical sheet
placed in the
original schematic

If you can’t select a
section of schematic
completely using
the selection box
tool, select as much
as you can, then
press and hold the
CTRL key whilst
clicking any missed
components
or wires.

QUICK TIP

FORGE

51

schematic clarity, we could just place the four motor
driver circuits into our A3 schematic and wire them
using either labels or direct wiring. However, another
way we can add content to the schematic is by
using hierarchical sheets. A hierarchical sheet can be
thought of as a sub-sheet that exists in the schematic
below the main page, into which we can insert
designs which can be connected to the main top-layer
schematic page.

To create a hierarchical sheet, you can use the
‘Add a hierarchical sheet’ tool icon found in the
lower right-hand area of the Schematic Editor, or
you can press the S key on your keyboard. Either
way, you then click and drag to create a rectangle
in the schematic. When you left-click to finish the
rectangle, a dialog window will launch called ‘Sheet
properties’. Into this you can put a sheet name,
which will be displayed in the rectangle on the main
schematic page. We’ll call our first sheet ‘L9110_
Motor_Driver_1’. Under this is an input box for a
sheet file name. It will currently be populated with
‘untitled.kicad_sch’. This is the name of a separate
file that will be created for this hierarchical sheet.
Again, we changed this to something appropriate,
such as L9110_Motor_Driver_1.kicad_sch. Notice
that there are checkboxes labelled ‘show’ and, by
default, they will be ticked (Figure 4). This means
that, in the main schematic sheet, our hierarchical
sheet rectangle will appear with both of these pieces
of information listed. It is advisable to show one, or

Another way we can add
content to the schematic

is by using
hierarchical sheets

”
”

Figure 5
Inside a hierarchical
sheet with a design
using a hierarchical
label and a
global label

Figure 6
The test hierarchical
sheet object viewed
from the main
schematic. The
hierarchical pin has
been connected
to VBUS

KiCad: schematic organisation and hierarchical sheets

SCHOOL OF MAKING

52

both, of these pieces of information or else you have
to navigate into the hierarchical sheet to see what it
contains and it can be confusing if you have multiple
hierarchical sheets. On a similar theme, notice
that you can also play with the appearance of the
hierarchical sheet rectangle, increasing or decreasing
line width, background, and border colours. Whilst
this might seem frivolous, if you end up working in a
design with a lot of hierarchical sheets, being able to
differentiate them by colour scheme can be an aid to
productive working.

To enter your new hierarchical sheet from the main
schematic page, you can either right-click on the
rectangle and select ‘Enter sheet’, or you can double-

click on the hierarchical sheet rectangle. You should
be met with a brand new empty schematic.

You can now begin to place components and create
your circuit in the hierarchical sheet. The first thing
to note is that anything connected to a global label or
net will automatically be connected to those points
globally. So if, for example, you add a component and
connect it to a ground ‘GND’ symbol and to ‘VCC’,
they will automatically be connected to those points
in the top-layer schematic and will appear as GND and
VCC connected when you import those components
and connectivity to the PCB Editor. If you did place
and connect such a component in a hierarchical sheet,
when you return to the main sheet you won’t see
any connections coming out of the hierarchical sheet
rectangle. For general ground and power connections
this might be OK, but it may get confusing if you use
this approach for all your connectivity. A common way
of making connections into and out of hierarchical
sheets is to use hierarchical labels.

HIERARCHICAL LABELS
To place a hierarchical label, you can either click the
‘Add a hierarchical label’ tool icon or press H on your
keyboard. A Hierarchical Label Properties dialog will
appear. Insert a name into the Label field. You will
now have a label you can place, move, and rotate and
connect into your design. In Figure 5, we have made
the hierarchical label ‘test_hierarchic’ and connected
it to the cathode end of an LED component symbol.
We’ve also placed a global label test to another

Above
The L9110 circuit for
each motor. Note the
hierarchical labels
used on the IB
and IA pins

Below
Each of our L9110
driver circuits sits in
its own hierarchical
sheet, and the
individual motor driver
pins are broken out,
ready to be wired into
the RP2040

As a hierarchical
sheet is a separate
schematic file, you
can use ‘File-page
settings’ to set the
title, page size, and
other details, as we
did earlier.

QUICK TIP

FORGE

53

LED component. Moving out of the hierarchical
sheet is simple: you can either right-click and select
‘Leave sheet’ or you can hold ALT and then tap the
BACKSPACE key. Even after creating a hierarchical
label inside a hierarchical sheet, you won’t see that
connection until you right-click over the hierarchical
sheet rectangle and click ‘Import Sheet Pin’ from
the drop-down menu. You should now see any
hierarchical pins appear aligned with the edge of the
rectangle. You can move these pins to any position
around the rectangle, and you can connect and wire
to these labels as you would any other symbol. In
Figure 6 you can see the ‘test_hierarchic’ label in the
sheet rectangle, and we have wired it to VBUS. Note
that you can’t see the global label ‘test’, but that point
inside the hierarchical sheet will be connected to any
other connections with that global label anywhere
in the project schematic. Note again that inside this
hierarchical sheet, there is a connection to a GND
symbol and, as such, that point is connected to the
project’s global GND label.

For our robot rover design, we are going to keep
it simple and affordable and will use the L9110
motor driver IC as it’s adequate for the N20 motors,

affordable, and there is a large amount of stock
available on JLCPCB. The circuit around the L9110
is pretty straightforward, with a couple of pull-up
resistors and a decoupling capacitor across the motor
outputs. Creating a hierarchical sheet for the motor
driver circuit, we’ve used hierarchical labels to create
the two signal inputs. We could have opted to have
the motor outputs as hierarchical labels, but it was
cleaner to add the motor output connector symbols
inside the hierarchical sheet, avoiding more clutter on
the main schematic.

One of the great benefits of using hierarchical
sheets is that we can copy them, or copy their
contents, quickly to create multiples of similar
modules, either within the same project or into other
projects. In our robot rover project, we have simply
added three more hierarchical sheets and named
them sequentially as Motor_Channel_1, Motor_
Channel_2, Motor_Channel_3, and Motor_Channel_4.

We then copied and pasted the contents of Motor_
Channel_1 into each different hierarchical sheet.
Whilst not wholly necessary, it seemed good practice
to avoid confusion. So, each time we copied the
L9110 circuit, we relabelled the hierarchical pins so
that each motor channel was unique. We can then use
the ‘Import Sheet Pin‘ function that we used earlier on
each of the motor channel hierarchical sheets, and we
are ready to wire the pins to our chosen GPIO pins on
the RP2040 – either directly or using labels to again
keep the main schematic clean and tidy.

Hopefully you have found this guide useful. It’s
great to think about your practice with KiCad and
how you can be organised in a way that suits you.
A final good idea is to look through some open-
source hardware projects that have used KiCad.
You’ll certainly find lots of different approaches to
organisation and project management.

 LARGE PROJECTS
One thing about KiCad is that you can use many different approaches, depending on your
needs or your particular way of thinking. One such approach we’ve seen out there in
KiCad-land is to use a flat hierarchy for your schematic layout. This essentially turns the
first schematic sheet into a kind of holding sheet where all the hierarchical sheets are
held. You can then, in each sheet, use general and global labels so you don’t need to draw
any connectivity on the main topmost schematic. Although this might momentarily confuse
anyone else opening your project, it’s actually a brilliant way to organise a particularly
large project into specific sections. Of course, as each hierarchical sheet is an individual
schematic file, you can simply work on each file individually as needed in development.
One tip that we noticed for this approach, or for working with multiple hierarchical sheets,
is that if you copy and paste a hierarchical sheet rectangle in the main schematic, it will
automatically add and increment a number to the name of the sheet. So ‘sheet’ would
become ‘sheet1’, then ‘sheet2’. We even noticed that if you created a first sheet called
‘Something_1’ and copied and pasted it, the clone would increment to ‘Something_2’.

One of the great benefits
of using hierarchical
sheets is that we can

copy them

”
”

TUTORIAL

78

KiCad, mechanical accuracy, and silkscreen features

t’s increasingly common for projects to
incorporate PCBs as a mechanical part
of the mechanism. In our last section, we
looked at hierarchical sheets and laid out a
motor driving circuit that we could copy and
paste to add motor drivers to a project. In this

part, we are going to create a simple robot rover
that we’re calling ‘stoRPer’. StoRPer is a tongue-in-
cheek reference to a favourite childhood toy from the
1980s: the ‘Stomper’. The Stomper, by toy company
Schaper, was the first ever four-wheel drive electric
toy car. Despite no form of remote control, they
were great fun to try and build obstacle courses
for, or to test on steep gradients. We wanted the
reasonable torque and the four-wheel drive aspects

of the Stomper but with the addition of a Raspberry
Pi Pico to make it a more interesting and controllable
platform – so, ‘stoRPer’ it is. It’s designed with all-
wheel drive (AWD) so that Mecanum drive systems
can be built and experimented with.

We are going to use Pico as a module on this build
and focus on some aspects of particular importance
when we are using a PCB as a mechanical part as
well as for electronic purposes. The idea for the
project is that the PCB will form the chassis of the
stoRPer, with the motors being clamped to the PCB
chassis using some 3D-printed parts. Therefore,
we need to be capable of placing components
and general PCB geometry accurately in order for
everything to fit together. We’ll also look at how
we can check our PCB and 3D-printed models
will fit together before we print or send the PCB
for fabrication.

One of the first jobs is to create a Pico symbol
component in the Symbol Editor. We covered creating
symbols in the earlier sections of this series, so we
won’t recap that process too much. We decided not
to include the Pico’s three debug pins on either the
schematic symbol or the PCB footprint. This was
partly because, across the different Pico models,
they are physically in different positions on the board
and also, as we intend to have a Pico mounted onto
this project, we can still interact/wire to the debug
pins if needed. As such, we laid out a simple 40-pin
component in the Symbol Editor and brought it into
our Schematic Editor. After quickly connecting all
the ground points, we set about connecting four
hierarchical sheets, each with an L9110S motor driver

Right
A custom Pico symbol
has been created,
with the majority of
the pins broken out

In this part of the ongoing KiCad series, let’s look at some techniques to increase
accuracy when aiming to create a PCB to be used as a mechanical structure

KiCad, mechanical
accuracy, and
silkscreen features

I
Jo Hinchliffe

Jo Hinchliffe is a
constant tinkerer and
is passionate about all
things DIY space. He
loves designing and
scratch-building both
model and high-power
rockets, and releases the
designs and components
as open-source. He also
has a shed full of lathes
and milling machines
and CNC kit!

79

FORGE

IC-based circuit inside. We covered working with
hierarchical sheets in the last section of this series,
but you can see the circuit layout in Figure 1. Each
of the four motor drivers has its own sheet and has
two pins broken out. We’ve connected these sets of
pins to the Pico symbol using labels A1, B1, A2, B2,
etc. The rest of the Pico’s pins are broken out and
connected to some multi-pin connectors, ready to be
broken out on the PCB.

For the stoRPer project, we’ve decided to mount
the Pico using the through-hole header pads on the
Pico rather than the castellated edge connectors.

This means that we won’t be mounting the Pico
flush to the project, but it does mean that the
Pico footprint is thinner. We can also choose to
use header sockets or not to allow the Pico to be
permanently or temporarily mounted to the PCB.

The header pin pads on the Pico lie in a 2.54 mm
pitch grid, with the 20 pins on either side being
separated by 7*2.54 mm. This makes them easy
to lay out – simply add pads on a 2.54 mm grid in
the Footprint Editor (Figure 2). We also want to be
able to place a rectangle on the silkscreen layer that
accurately shows the position of the board.

Consulting the Pico documentation, we can find a
technical drawing and see that the outer edge of the
Pico is 51 mm × 21 mm. We also need to consider
the position of this rectangle relative to the pads that
we have just created. We can see in the technical
drawing, for example, that relative to the centre of
the upper left-hand pin (pin 1), the upper-left corner of
the Pico is 1.37 mm higher in the Y axis and 1.61 mm
over to the left in the X axis. To use this information,
we can go back into the Footprint Editor and place
our pointer on the grid point in the centre of the pad
we placed for pin 1. If we then press the SPACE
bar, we will set the local origin of the page to be 0,0
at this point. We can check this by looking at the
bottom of the screen as we move our pointer, the
distance should increase relative to this point. We
can then set a user grid to 1 mm spacing and use
this grid to draw our 51 mm × 21 mm rectangle.

Left
The stoRPer robot
prototype using the
PCB as its main
chassis component

Figure 1
The layout of the
L9110S motor driver
circuit cloned into four
hierarchical sheets

The rest of the Pico’s
pins are broken out

and connected to some
multi-pin connectors

”
”

TUTORIAL

80

KiCad, mechanical accuracy, and silkscreen features

If we then select the rectangle, we can right-click
and scroll in the drop-down menu to Positioning
Tools > Position Relative To…. Selecting this, we will
see a dialog box – in the dialog box, click to select
‘Use Local Origin’ and then adjust the ‘Offset X’
and ‘Offset Y’ by the amounts we derived from the
technical drawing (Figure 3). Note that, by default,
the origin corner of the rectangle is the top left-hand
corner. Using this method, you should be able to
place items with incredible accuracy.

One thing of note is that despite our stoRPer
robot design being relatively simple mechanically
– a rectangular PCB – we do want to be able to
place footprints accurately within the edge cut
area. When designing this and other footprints,
it’s worth considering where your origin point is
in the Footprint Editor and placing the device in a

known position relating to it. We opted to place the
Pico footprint so that the upper left-hand corner of
the silkscreen box depicting the edge of the Pico
was the origin point on a 1 mm grid spacing. This
meant that later, when we placed a rectangle in the
PCB Editor that represented the edge of the PCB,
we could place it in a position such that the Pico
is dead centre, with the larger box also placed on
a 1 mm grid coordinate. After playing with a few
test boxes in KiCad, we decided our rectangular
chassis dimensions would be 64 mm × 86 mm.
We used Inkscape to draw our rectangle as we
could then easily add a 2 mm radius to each corner

LOTS OF HOLES

When creating footprints with lots of through-hole
pads, KiCad makes it pretty simple: you click to add a
pad and then the tool indexes to the next numerical
pad for you to place. If you’ve placed and positioned
a lot of pads though, it can be annoying to realise that
you need to change an aspect of the pad’s properties
for all of them. KiCad has you covered, though. As an
example, when we made the footprint for a Raspberry
Pi Pico and decided that after laying out 40 standard
through-hole pads, we wanted to increase the internal
hole diameter and the overall outer diameter to
increase the size. The Footprint Editor conveniently
recognises that this is a common situation and, as
such, you can simply change one pad to your desired
pad properties and then, with your adjusted single pad
highlighted, you can right-click and select ‘Push Pad
Properties to Other Pads…’ to make all compatible
pads change to the new characteristics.

Figure 2
Creating the simple
yet accurate Pico
footprint

Figure 3
Using the ‘Position Relative To…’ positioning tool to accurately
place objects in the Footprint Editor

We want to 3D-print
some brackets to
clamp the motors

into position

”
”

81

FORGE

of the rectangle. We’ve again covered importing
graphics in an earlier section of this series, but we
easily imported the rectangle we drew as an SVG
in Inkscape into our edge cuts layer using the File >
Import > Graphics function.

With the Pico placed and the PCB edge defined,
we need to consider the physical mounts for the
motors. We want to use the excellent and available
N20-style geared motors, mounting one for each of
the four motor driver circuits. We want to 3D-print
some brackets to clamp the motors into position,
so we need to leave some space for the 3D print
material around the motor, and we need to take this
into account when creating a footprint for the motor
mount. After some consideration, we created a
custom footprint which consisted of two non-plated
through-hole (NPTH) mechanical pads placed in-line.
These were placed at a distance between centres
of 26 mm, placed on a 1 mm grid spacing. To place
an NPTH mechanical hole, you place a regular pad
and then press E to change the pad type in the Pad
Properties dialog. We set each NPTH hole to 2.1 mm
internal diameter to create clearance for a small M2
bolt. To finish the footprint for the N20 motor mount
clamps, we added a silkscreen rectangle set to the
dimensions of the base of our 3D-printable mount
design (Figure 4). Note that this is the first time in
the series that we have placed extra components
which aren’t connected to anything or included in
the schematic in the PCB Editor. To do this, we click

the ‘Add a footprint’ tool icon and select a footprint
in a similar manner to how we would place a symbol
in a schematic.

Adding and removing text-based elements to
a silkscreen layer is reasonably straightforward
in KiCad 7. On more technical PCBs, as opposed
to artistic PCBs, we often lay out our PCB design
with little regard for the silkscreen and then sort
the silkscreen layer out later in the development.
Often, one of the first tasks is to remove unwanted
elements on the silkscreen that have been
automatically placed by the use of default library
footprints. We can select the correct silkscreen
layer, often the front silkscreen ‘F.Silkscreen’, and
for items such as footprint reference annotation,
we can simply left-click to select them, then move
them or press the DELETE key to remove the item.
It’s common for this reference to not be placed

As the stoRPer
design evolved,
we used simple
rectangular boxes
drawn in KiCad
on either the
F.Silkscreen or the
User.Comments
layer as guides and
visual aids.

QUICK TIP

Figure 4
The mechanical
footprint that will
mount the N20 motor
and clamp

Figure 5
Editing a footprint
with the component
selected and opened
in the Footprint Editor
from the PCB Editor
gives the option of
only editing that
individual instance of
the footprint

TUTORIAL

82

KiCad, mechanical accuracy, and silkscreen features

Above
The combination of
KiCAD and FreeCAD
make a great open
source toolchain

Figure 7
A new feature in KiCad 7 is the ability to add knockout text
items, where the text is subtracted from a small block on the
silkscreen layer

FREE BOOK

In the free-to-download book FreeCAD for Makers
from Raspberry Pi Press, we looked extensively
at the use of the KiCad StepUp workbench which
enables and simplifies importing KiCad projects as
3D objects into FreeCAD as well as the creation of
3D components for inclusion into KiCad’s 3D PCB
viewer. It’s an incredibly powerful suite of tools and is
definitely worth exploring. For this project, however,
we just wanted to check if the motor clamp we had
created in FreeCAD would fit our PCB chassis. You
can use File > Export and select the ‘STEP…’ option
to export a STEP file which can be imported into
FreeCAD; however, this will lack the details of the
copper layers and silkscreen which you might need
to see to check if mechanical components cover
aspects of your PCB design. One simple approach that
solves this is to export a WRL file. WRL files are file
types often used by assets destined for use in virtual
reality, but they have the advantage in KiCad that a
WRL export contains all the visual details of your PCB.
We used File > Export > ‘VRML…’ to export a WRL file,
and then we used File > Import in a new document in
FreeCAD to import the file. We’d made a simple N20
clamp component which had 2 mm radius corners on
two corners matching our PCB and N20 motor clamp
footprint. While we could have used an Assembly
workbench, such as A2plus in FreeCAD, to constrain
the clamp in position, for a simple check, we can move
the part into alignment to visually check how it looks.

Figure 6
The Text Properties dialog where you can set text features,
including the new ‘Knockout’ feature

83

FORGE

optimally and may sit under or across other parts
and components. The annotated reference is formed
from both the automatic annotation of the schematic
during the footprint association process and the type
of component it is, so R for resistor, C for capacitor,
J for connector, U for IC, etc. As they replace the
placeholder Ref* designator, they are independent
of the main footprint design and, as such, can be
removed with ease. If, when tidying the PCB design,
you want to move a part of the silkscreen design of
a footprint, you will need to edit that in the Footprint
Editor. KiCad makes it easy to edit the footprint and
apply the changes just to the individual footprint
within this project rather than pushing the changes
to the global footprint library. With a target footprint
selected in your PCB, press CONTROL and E to
open the footprint in the Footprint Editor. You should
see the footprint in the editor with a message in
the upper left-hand corner of the window that reads
‘Editing J4 from board. Saving will update the board
only’, where ‘J4’ will be the reference of whatever
footprint you have opened (Figure 5). You can now
make any changes to the footprint that you require,
including deletion or changes to the graphical
silkscreen elements.

Of course, often we want to add text-based
components to our board designs. Again, KiCad
makes this pretty straightforward. We can simply
click the ‘Add a text item’ tool icon and then left-
click in the PCB design. The ‘Text Properties’ dialog

is pretty straightforward and we can insert text,
make changes to the font and size as well as change
the orientation of text. One interesting new addition
to KiCad 7 is the ‘Knockout’ option (Figure 6). If
you input some text into the Text Properties dialog
and click the Knockout checkbox, then the text will
be created as a solid silkscreen block with the text
removed. It’s a great effect, looks smart, and is very
readable – a welcome new feature (Figure 7).

Finally on adding text, sometimes you might
like to add text to the silkscreen layer as a graphic
rather than directly as text. We’ve briefly looked at
importing graphics before for either creating edge
cuts geometry or for importing logo graphics from
Inkscape. One notable point is that if you use the
text creation tools in Inkscape and then directly
try to load them as a graphic element, this will
fail as KiCad SVG import doesn’t recognise the
text elements. This is pretty easy to rectify.
As an example, we created our stoRPer text in
Inkscape and then, with the text object selected,
we click Path > Object to Path (Figure 8). As usual,
we edit the document properties in Inkscape so
that the document is the size of the text object –
we then save the file as a standard SVG. In the
PCB Editor, we then select File > Import > Graphics
to import the file, ensuring to select the correct
‘F.Silkscreen’ as the graphic layer. The text graphic
then imports correctly and can be placed in the
design where required.

Figure 8
Converting a text
object to a path in
Inkscape ready for
import into KiCad

TUTORIAL

60

KiCad, different PCB substrates

o far in this KiCad series, we have
designed our PCBs and had them
manufactured using the common PCB
material known as FR4. On FR4, our
copper traces sit on top of fibreglass,
and this is what most people think of

when they hear the phrase ‘PCB’. However, it’s not
the only option, and most of the PCB fabrication
houses have a variety of different materials that
they can make a PCB from. The circuit is typically
still copper, but these traces sit on top of other
materials. Let’s take a look at the alternatives.

FR4 is a standard of material for the dielectric,
the insulating non-conducting part of a PCB. FR4 is
a type of composite fibreglass material, made up
from fine glass reinforcing fibres and epoxy resin,

and is very non-conductive. The ‘F’ and ‘R‘ are an
abbreviation of ‘fire-retardant’, which is one of the
many benefits and safety features of the material.
Whilst fibreglass composite materials have inherent
fire-resistant qualities, FR4 has bromine added which
characteristically will reduce the spread of fire.

As well as being essentially fireproof, FR4 has a
low thermal expansion coefficient – this means that
it won’t expand or contract very much in hot or cold
environments. This is important because if a PCB
expands or contracts a large amount, then it is likely
that traces and components on the board will be
damaged, crack, or disconnect. Fibreglass composites
are strong and most PCB houses will offer a choice
of thickness of FR4 boards, allowing you to choose a
thickness and strength suitable for your application.

Right
Some small polyamide
flexible PCB antennas
fabricated by
OSH Park

In this part of the ongoing KiCad series, let’s look at some
of the different materials PCBs can be fabricated from

KiCad, different
PCB substrates

S
Jo Hinchliffe

Jo Hinchliffe is a
constant tinkerer and
is passionate about all
things DIY space. He
loves designing and
scratch-building both
model and high-power
rockets, and releases the
designs and components
as open-source. He also
has a shed full of lathes
and milling machines
and CNC kit!

61

FORGE

As FR4 is the most common PCB material, there
aren’t many special considerations or changes
needed when designing a PCB for FR4. If you
want to set up KiCad to display your target board
thickness when using the 3D viewer, you can
change this by adjusting the dielectric thickness
value via the Board Setup. This dialog is found at
File > Board Setup in the PCB Editor, then you
need to select the ‘Physical Stackup’ option from
the list, and then adjust the ‘Dielectric 1’ thickness
variable (Figure 1).

Flexible PCB designs are commonplace in modern
electronics, with many use cases. Probably the most

common to come across are simple flex connectors.
These have obvious advantages, in that they can
connect components or PCB modules in different
locations in a system. Flex connectors can be
inserted into specific clamping sockets or, indeed,
can be designed to directly solder onto copper pads.
They have the benefit of being able to fold and bend
around, allowing complex layups of PCBs which do
not need larger header pins or sockets. There are
numerous types of flexible PCB substrate, with the
most common being polyamide film. Traces and
pads work in a very similar manner to any PCB,

Figure 1
Changing the
thickness of the
‘Dielectric 1’ layer to
change the overall
thickness of our
PCB design

There are numerous types
of flexible PCB substrate,

with the most common
being polyamide film

”
”

GOLD OR SILVER

There are lots of other choices that can be made when
getting a PCB fabricated. One choice is the type of
surface finish applied to any exposed copper pads.
These take the form of differing types of covering or
plating, which act to both allow the easy fitting of
components, solder, or solder paste, whilst stopping
bare copper pads from oxidising if left uncovered.

‘Hot Air Solder Levelling’ (HASL) is a common option
where the board is dipped fully into molten solder,
removed, and excess solder driven off. This results in
all copper areas being covered in a flat, thin layer of
solder. It’s an older technology and has been used in
PCB fabrication for multiple decades and, as such, it’s
usually an affordable option. It is easy to solder onto,
offers good protection against oxidisation, and is stable
and long-lasting. It has a long shelf life, so if you don’t
get around to populating your PCBs for a long time,
they will still be in good condition. Finally, HASL is often
offered with options that contain lead or options that
are lead-free.

‘Electroless Nickel Immersion Gold’ (ENIG) is a newer
technology that applies a two-layer coating to the
exposed copper parts of a PCB. The layer directly
on top of the copper is a thin layer of hard nickel
which creates a barrier stopping the copper from
oxidising. To stop the nickel plating from oxidising, a
fine layer of gold is immersion-plated over the top.
When components are soldered onto ENIG surfaces,
they create a strong bond with the nickel layer, and
therefore the copper underneath. ENIG is also suitable
for covering larger planes on the PCB, so has become
a popular choice.

There are other surface finishes, such as ‘Immersion
Tin’, ‘Organic Coating’ (OSP), and ‘Immersion Silver’,
but HASL and ENIG are most common. Most PCB
manufacturers use either HASL, lead-free HASL, or
ENIG, or some PCB manufacturers will offer them as
choices. For example, JLCPCB has HASL selected as
default, but you can switch to lead-free HASL or ENIG.
OSH Park PCBs are all created with an ENIG surface
finish. Over on PCBWay, you can select from a larger
range that includes HASL, ENIG, OSP and more – you
can even specify to have no coating whatsoever.

Most PCB
fabrication services
have detailed
information on the
thickness of each
layer of their PCBs.
You can use this to
emulate the PCB
accurately in KiCad.

QUICK TIP

TUTORIAL

62

KiCad, different PCB substrates

in that they are a thin layer of copper. Flexible PCBs
can become quite complex to design for, and many
PCB fabrication houses will have options for custom
layer materials in flex PCBs. These can also include
rigid sections, which means you have to supply
a design that can distinguish different substrates
within it. If you plan to use this technology, it’s good
advice to read any guidance your PCB fabrication
house has to offer and to speak to them directly
to explain your concept. At the simpler end of flex
PCBs, it can be as straightforward as laying out a
regular PCB design, exporting some Gerbers, or
sending a project file to your PCB fabricator.

A good use case for flex PCBs, and a good simple
example, is a flexible antenna. We’d found a paper
online with an image and dimensions for a dual-band
2.4GHz and 5GHz patch antenna, which piqued our
curiosity, so we set about laying it out in KiCad.
We actually began in Inkscape: the PDF source we

COPPER CONUNDRUM
Copper weight describes the thickness of copper
at any given point on a PCB. It’s often expressed as
ounces per square foot, so a 1 oz/ft2 copper weight
will be thinner than 2 oz/ft2. Copper weight can be
important in terms of designing PCB traces, as the
weight affects the depth of the trace. Different trace
widths and weights may need to be used when
considering the amount of current particular parts of a
circuit may be passing. Similarly, track impedance and
RF qualities of tracks may well come into play, as well
as track sizes, when trying to match lengths of track in
more complex PCB designs.

Most common copper weightings are 1 oz or 2 oz, and
many PCB houses will offer these as a choice. If you
require a precise copper weighting, it’s possible, at a
price, for some PCB fabricators to offer more bespoke
weight of copper by plating or etching extra material
to or from the board.

It’s good advice to read any
guidance your PCB fabrication
house has to offer and to speak

to them directly

”
”

Above
Our flexible antenna
design in KiCad

63

FORGE

had for the design was imported into Inkscape, but
it had a gradient fill and therefore wouldn’t export
correctly as the whole object was full of nodes. If
this was a bitmap image, it would have been a good
candidate for Inkscape’s ‘Trace Bitmap’ function, but
as it was a vector file, this wouldn’t work. However,
as a vector image, it was straightforward to drag in
vertical and horizontal guide lines and snap these to
the edges of the PDF antenna drawing (Figure 2).

Once we had a guideline for every part of the
antenna in place, it was a simple job to use the
pen tool to draw a continuous line around the part,
closing it to form a solid object. There is some
discussion online around not using sharp 90-degree
angles in traces when aiming for a flex PCB as, if
the PCB is flexed, the sharp corners can be origin
points for tears and failures. Whilst not a massive
concern for this design, it was easy to add internal
and external radial chamfers to the antenna object

by selecting the object, then using the ‘Path effects’
dialog to apply the ‘Corners’ path effect chamfer
option (Figure 3). Finally, we deleted the original
imported PDF, resized the document to fit our
antenna design, and then saved it as an SVG.

In a new KiCad project, we actually ignored
our usual workflow of creating a schematic and
associating parts to schematic symbols and went
straight to the PCB Editor. You can directly add
components and create traces in the PCB Editor with
no schematic in place. For a more complex project,
we wouldn’t recommend this approach, as you

Figure 3
Using the ‘Corners’
path effect in
Inkscape to add
internal and
external chamfers

Figure 4
By setting the board
material, dielectric
thickness, and
solder mask colours,
we can emulate a flex
PCB in the KiCad
3D viewer

Figure 2
Using Guidelines in Inkscape to manually
trace the antenna design image

TUTORIAL

64

KiCad, different PCB substrates

have no means of checking connectivity or creating
net connections, but for small simple projects like
this, it’s pretty easy.

We imported our antenna SVG, making sure to
import it onto the Front Copper layer (F.Cu). We
then used the ‘Add a Footprint’ tool to add two
small SMD pads. We positioned these on the
points in the antenna design that the original design
had indicated. With no net connections due to no
schematic, these pads will be directly connected to
the large copper antenna design that we just placed,
but of course, the pads will have no solder mask

over them, allowing us to solder on a connecting
coaxial cable. All that remains is to then quickly draw
another SVG for the outline of the antenna, which
we did in Inkscape, but you could just draw in KiCad.
With the outline imported to the edge cuts layer,
we have a completed design. To get the design
fabricated, we used OSH Park which has a flex PCB
offering. One of the nice features of OSH Park is
that you don’t have to produce Gerber files to upload
– you can upload your KiCad PCB file directly to the
website for previewing and ordering. Conveniently,
either project files or Gerber files don’t particularly
specify the board substrate or thickness, so we
don’t need to specify a thin flex board design in
KiCad. However, we might want to model the board

FILLING HOLES

Vias, the small plated through-holes that connect
different layers of the PCB, have different ways of
being finished. For many projects, the PCB fabrication
house default will be fine, but it’s worth looking at the
common options offered.

‘Tented vias’ are covered with the solder mask, so
no solder would stick to them. The hole may or may
not be filled, depending on the size of the via. Other
benefits of tenting are that you reduce the risk of
unintended shorts when boards are being assembled
into products or being handled etc.

‘Un-tented vias’ have no covering, so are finished
in the selected surface finish in the same way as
exposed pads and other copper features. Whilst
this may well be fine, there is a risk of accidentally
soldering to vias or for short circuits.

‘Plugged vias’ are filled in a couple of different ways,
or you may have a choice. One way is to fill the via
with solder mask; another is to fill the via with epoxy
resin. Some manufacturers may only be able to fill vias
up to a certain diameter or, indeed, some PCB houses
can offer custom approaches where you can ask for
all vias of a certain diameter to be filled. The benefit of
plugging vias is that the via can’t accidentally become
filled with solder or other conductive material.

‘Conductive plugged vias’ are not the most common
choice, but some PCB houses can fill vias with
conductive material. This can increase the amount of
current the via is capable of passing. There are trade-
offs in that the conductive filler may thermally expand
at different rates than the other board materials,
causing small flexes leading to potential failures. As
an example, JLCPCB offers the option to fill vias with
conductive copper-filled epoxy.

All that remains is to then
quickly draw another

SVG for the outline of
the antenna

”
”

Figure 5
A 3D render of our
flex circuit

65

FORGE

accurately in KiCad, especially if we are using either
renders of the KiCad design in promotion or if we
are exporting the board 3D model for use in other
CAD programs.

Again, we can use the board setup dialog and
the ‘Physical Stackup’ tab in the PCB Editor to
emulate a flex circuit. Your PCB fabrication house
will have data about all the thicknesses of each
layer of their flexible PCB offerings and you can use
this to set thicknesses in the board setup. If you
just need a close enough PCB view that looks like
your flex design, you can simply adapt the major
thickness of the board by changing the material to
‘Polyamide’ and setting the thickness of that layer
to 0.0102 mm (this is the OSH Park flex polyamide
layer thickness), as in Figure 4. You can then set the
colours of the top and bottom solder mask layers
to transparent by reducing the opacity to zero using
the ‘Custom colour’ option. This, in the 3D viewer,
will then give you a reasonable approximation of
a flex PCB (Figure 5). Often, PCB manufacturers
offer metal substrates for PCBs, commonly copper
or aluminium. These substrates can be useful when
you need to dissipate heat quickly through a system.
Often, aluminium substrates can make sense for

temperature sensor modules where you want the
sensor to be accurate but the board not to soak up
heat. Another application for metal substrate PCBs
is where you want the PCB to act as a heatsink. For
example, we had JLCPCB make and assemble some
1-watt LED modules (Figure 6). Running at 1 watt,
these LEDs generate a reasonable amount of heat
and, to promote their long life, it’s useful to have
some kind of heatsink attached. The reverse side of
the LED has a large thermal pad which connects to
the board, and the reverse of our aluminium board
is bare metal. This acts as a heatsink for the LED
module and the temperature is reduced. One thing
of note is that aluminium and copper substrate PCBs
can be bent if they are put under pressure or load. In
fact, when your aluminium PCBs arrive in panels, it
can be quite hard to remove them without bending
the PCB!

FR4, flexible, and aluminium are not the only
options often when we move to high-speed designs,
designs running at microwave frequencies, or when
we have very special applications like medical
devices – there are other substrates available.
Rogers, PTFE, Teflon, Copper Core – it’s fun to read
around some of these more esoteric materials.

Figure 6
Our small aluminium
LED module

TUTORIAL

74

Exploring PCB services

n the last part of this KiCad series, we
looked at the different substrates and
other hardware options that are available
across a range of PCB fabricators and
PCBA services. In this section, we are going
to generally look at the range of services

that are available, and look at what some of the
services and companies need from us to make our
PCB projects. We’ll also mention a few of the quirks
we’ve found in some services that had us scratching
our heads.

Each service is well-established and capable
of creating quality PCBs and/or assembled PCBs.
However, they each have different specifications and
tolerances. In fact, that’s often a good place to start
when comparing or looking for a service to make

your project. Questions to ask yourself include: what
minimum clearances and track widths do I need?
What is the smallest hole diameter? How accurate
do I need things?

Over on OSH Park, they have a great collection of
documents relating to the services they provide. The
Drill Specs page details the minimum and maximum
hole sizes, sizes for annular rings, and the via plating
specification. Beware that all these specifications
are different across OSH Park’s various services,
changing, for example, between the two-, four-,
and six-layer options. The minimum track width
specification on the OSH Park site is listed as
0.006”, with 0.006” clearance on the standard two-
layer boards, moving down to a very accurate 0.005”
in the four-layer board offerings (it’s common to

Right
Our small PCB
ruler project provided
some interesting
challenges to
PCB services

In this part of the ongoing KiCad series, let’s explore working
with a range of PCB services

Exploring PCB services

I
Jo Hinchliffe

Jo Hinchliffe is a
constant tinkerer and
is passionate about all
things DIY space. He
loves designing and
scratch-building both
model and high-power
rockets, and releases the
designs and components
as open-source. He also
has a shed full of lathes
and milling machines
and CNC kit!

75

FORGE

see limits given in thousandths of an inch because,
apparently, you can have both metric and imperial at
the same time if you try hard enough). You can find
this and all the other details on the OSH Park KiCad
Design Rules page at hsmag.cc/oshparkrules.

If you have questions about the OSH Park
services, they have an excellent track record in
communication. You can email the support email
address and they will get back to you offering
excellent advice. We have even had the OSH Park
team open our KiCad project file and they have
fixed problems and then taken the time to teach
us solutions.

Different PCB manufacturers put the information
in different places. Another PCB service, DirtyPCBs,
bundle all their specifications and tolerances
information on their About page. They similarly list a
0.006” minimum track width and clearance across
both their two- and four-layer boards and cite their
other specifications and tolerances. The DirtyPCBs
service was designed as a minimal service with
its emphasis on ‘cheap’, therefore, it has no chat
service, and it’s difficult to contact the company to
ask questions. If you have challenges here, it can be
a better option to use search engines and find forum
conversations about the service to try and get the
answers you need!

Left
Technical details
of the OSH Park
PCB services

Left
The DirtyPCBs PCB
specification is in
amongst a large
About page

You can email the support
email address and they

will get back to you offering
excellent advice

”
”

http://hsmag.cc/oshparkrules

TUTORIAL

76

Exploring PCB services

We have, of course, used JLCPCB/A a fair amount
in this series. JLCPCB have a pretty exhaustive list
of their specifications over on their Capabilities page.
They can offer up to a whopping 20 copper layers
in their PCBs, with track widths and clearances a
default minimum of 0.005” in the two-layer offering,
moving to 0.0035” for four-layer options and more.

Similar specifications are available from PCBWay.
An advantage of this service is the maximum
dimensions of PCBs they can fabricate are 1100 ×
500 mm, whereas, for example, JLCPCB are 500 ×
400 mm. One thing of note about PCBWay is that
you specify the board and the board dimensions
and add it to your shopping cart prior to uploading
Gerbers, which can seem slightly counter-intuitive
compared to other services.

Above
JLCPCB’s specifications are found on their Capabilities page

Above
Many of the services offer online chat portals. These can
be useful when trying to negotiate problems or challenges
with a service

RULES RULE!
If, while developing a PCB project, you have a particular fabrication service in mind, you
can ensure your board design’s compatibility by setting up the Design Rules for your
board to match the service. The Design Rules is nested under the Board Setup window
we used in the previous section of this series to set up the different physical stackup
characteristics for different substrates. In the PCB Editor, navigate to File > Board
Setup and then open the drop-down menu labelled Design Rules. In the first section,
Constraints, you can set up limits for the minimum clearances, minimum track widths,
and other limits relating to the copper regions. You can also adjust the minimum via
sizes, hole sizes, and clearances, and also the minimum dimensions for text objects on
the silkscreen layer. The next item down in the Design Rules drop-down menu is the Pre-
defined Sizes tab. We’ve used this earlier in the series to set track widths for projects.
However, as a reminder, you could set this up at the beginning of a project whilst
considering any limitations or constraints your target PCB service has. Also, notice that
we can import the settings from a previous project – this is an excellent function if you
set up a project for a particular PCB service specification.

Jumping to the bottom of the Design Rules drop-down menu, we can see the Violation
Severity section. This section sets up how the Design Rule Checker (DRC) tool responds
if any of the rules set for a project are broken. As a primary word of warning, think very
carefully before setting any of these to ‘ignore’. It may well be that for a current project
you don’t mind some of these issues, but it’s possible under different circumstances or
projects, an ignored error could be critical.

Back in the PCB Editor window, to run the DRC at any point in your project, you can
either click the ‘Show the design rules checker window’ tool icon or you can select
‘Design Rules Checker’ from the Inspect drop-down menu. Once the window is open, you
can then click the Run DRC button for the PCB to be checked against the defined design
rules. Note that getting an error or a warning doesn’t always mean that your PCB project
isn’t working, but they are simply indications that there is something that hasn’t met the
design rules.

Rules don’t always have to be followed, but it’s always good to check which rules are
broken so you can be sure that any that are broken are broken intentionally. For example,
on our ruler PCB design, we got numerous silkscreen errors as the ruler sat over the
edge cut geometry, and we also got lots of courtyard errors where the courtyard areas
of the mounting hole footprints we had used had overlapped. The actual distances
between the mounting holes were all over the minimum clearance from each other,
so neither of these sets of issues actually mattered – it’s definitely worth checking
though. The DRC, when run, will add small red arrows or markers on your PCB design,
highlighting where the issues are located. If you close the DRC window, the markers still
remain on your design. When selecting a marker when the DRC window is closed, the
issue that the marker relates to will be shown in the lower toolbar on the PCB Editor. You
can reopen the DRC window and delete single markers or all markers using the relative
buttons. Obviously, if you don’t make changes to the PCB design and run the DRC again,
removed markers will be replaced.

77

FORGE

With all of these services, it’s definitely worth
contacting them using the chat function or emailing
if you want to check specifications.

DIVING DEEPER
We have often featured OSH Park as a go-
to company for PCB fabrication in HackSpace
magazine. They have an excellent track record in
supporting and promoting open-source projects,
and they have that iconic purple solder mask finish
which is very visible across lots of maker/hardware
hacker projects. However, probably one of the main
reasons that OSH Park have often featured as a
service is that you can directly upload KiCad PCB
files to their website – you don’t have to go through
the process of making compatible Gerber files. This
makes the service really easy to use. If you are
reading this after a new milestone version of KiCad
has been released (for example, a future version 8),
you might find that it takes a little while for the OSH
Park website service to become compatible, but rest
assured, you can also upload a zip file of Gerbers in
the same way as other services in the interim. OSH
Park’s guidance on Gerber set up and requirements
is available at hsmag.cc/Gen_Gerbers.

Beyond the standard OSH Park purple offering,
there are options for the ‘After Dark’ finish (black

substrate and a clear solder mask), a lighter 0.8 mm
board with a heavier 2oz copper layer, and a flex
option. Whilst they offer good quality, they are
incredibly affordable when working with smaller
PCB designs. Finally on OSH Park, they are excellent
at communications. If you need to raise a ticket
to ask a question, they go above and beyond
many services.

Different fabrication houses have different needs
around the files and file formats that you upload.
One area we have noticed creating issues is the DRL
or drill files. In KiCad, you can create either a pair of
DRL files, one containing the non-plated through-
holes and another containing the plated drill holes,
or you can merge these two files into one. JLCPCB
wants these files supplied as a pair, whereas if you
upload Gerbers with two separate DRL files to

Above
An interesting issue
occurred where
JLCPCB didn’t detect
the edge cut geometry
on the flex antenna
design, which should
have rounded corners

Whilst they offer good
quality, they are incredibly

affordable when working
with smaller PCB designs

”
”

http://hsmag.cc/Gen_Gerbers

TUTORIAL

78

Exploring PCB services

OSH Park, you get an error message from OSH Park,
but it conveniently will merge the two files online
and also solve the issue for you. There can be other
little glitches involving drill files.

Some fabrication houses want there to be drill
files even if the PCB has no drill holes in the design,
for example, in the design of a single-sided PCB.
This caused an interesting issue when we designed
the flex PCB antenna example in the last part of this
series. We exported the design Gerbers and DRL

files even though the design contained no drilled
holes – this was just because we wanted to upload
the Gerbers to a range of services to see how they
rendered and get quotes.

With JLCPCB, when we uploaded the zipped
Gerber file, the preview would ignore the edge cuts
geometry, so the curved corners of the design would
disappear and, incorrectly, the board would appear
as having square edges. Chatting to the online chat

service, they confirmed that they could see the edge
cuts layer and assured us that if we placed the order,
the board would be cut correctly. We tried playing
around with the Gerbers and we also posted the
issue on the KiCad forum for discussion. It seemed
that others generating their own Gerbers from our
project would get a correct render on the JLCPCB
site. The difference we spotted was that they
weren’t including any drill files. Re-uploading without
drill files and the correct board outline and edge cut
geometry rendered correctly. As part of this process,
we discovered that OSH Park didn’t have this issue
and rendered the board correctly at upload. We
placed the order with them.

The moral of this particular story is that Gerbers
aren’t standard, so be sure to check what you need,
and be prepared to talk to the PCB manufacturer if
things don’t look right.

We had another issue relating to empty layers
when looking at different services to fabricate the
ruler design. When uploading the design to
PCBWay, it would throw an error with the upload
as the Gerber file for the copper layers contained
no copper. Obviously this is very unusual for a
PCB as copper is usually the conductive layer
connecting components and more. The ruler
project shows that with a more artistic use of PCB
fabrication, it’s possible to cause headaches for
fabrication houses.

Above
Whilst PCBWay
rendered the ruler
project correctly from
Gerber files, it couldn’t
initially process an
order due to an error
being created as there
was zero copper in the
copper layers

Some fabrication houses
want there to be drill files
even if the PCB has no drill

holes in the design

”
”

79

FORGE

We had a problem with one of our recent projects
when submitting the aluminium substrate LED
module project to JLCPCB services. The 1-watt COB
LED we had identified in the JLCPCB parts library
had a diagram on the datasheet of the LED which
had polarity markings on the two semi-symmetrical
flat SMD pin connectors. We’d actually seen these
LEDs in real life – they have an etched - and + in
these metal connectors.

When we uploaded to JLCPCB, the website
rendered the PCB with the components placed and
the JLCPCB 3D model of the LED had no polarity
markings. We presumed it would be correct, and
as only ordering a small number and the LED is a
large part, it wouldn’t be too onerous to swap them
around if they arrived incorrectly. After ordering, the
process was halted, and JLCPCB contacted us to
discuss and check the polarity of the LED. We had
to point out that it was an issue with their 3D model
that meant it was impossible to tell if it was rotated
correctly, and an engineer at their end would only be
able to tell when they physically went and looked at
the package. In the end, the aluminium LED PCBs
were correctly manufactured.

Our main takeaway point for working with any
PCB service is that most things are achievable with
good communication, which increasingly becomes,
in combination with the physical specifications we
require, a valuable deciding factor in choosing which
service to use.

RULERS RULE!
Making a PCB ruler is almost a right of passage in the PCB-making communities. They
can be a simple, useful tool, a good business card, or perhaps even perform some extra
function. Having an interest in model and high-power rocketry, we made a ruler which
has some accurately placed holes in it, into which you can place a pen. You can then pin
the hole at the 0 or 100 mm marker and draw circles that match common rocket motor
diameters or common Estes rocket body tube diameters. Handy for impromptu cardstock or
balsa rocket component-making. It might seem strange to use a PCB manufacturer for this,
but it’s actually a very affordable way of getting very accurate 2D designs made.

One slightly tricky aspect of creating a PCB ruler in KiCad is how to actually draw a
graduated line to give the ruler its measuring graphic element. Again, we’ve used the
excellent open-source Inkscape to solve this in combination with KiCad 7’s SVG import
abilities.

In Inkscape, draw a straight line using the pen tool and use the height and width settings
to set it to the length of the ruled section you require. We wanted a compact ruler PCB, so
we went with a 100 mm length. Next, select the line and then click Path > Path Effects. The
Path Effects dialog box should open on the right-hand side of the screen – there should be
a search bar at the top of this dialog. Type in ‘ruler’ and select the Ruler Path Effect that
appears in the results. This, in turn, should launch the Ruler Path Effects dialog. Set the
‘Units’ to ‘mm’ and then set the ‘Mark Distance’ to ‘1’. This should then add a graduation
line one millimetre apart along your line. Next, you can set the length of the major length for
the longer graduation lines and the minor length for the shorter lines. Finally, set the ‘Major
Steps’ to ‘10’. You should now have a ruler graphic with the commonly used idea of a longer
marker every 10 mm.

You could use KiCad to add the text to mark the numbers on your rule graphic, but we went
ahead and did this in Inkscape as it’s pretty easy to use the align and distribute tools to
bring a line of text labels into alignment with the ruler. We then resized the document using
document properties to the size of the design and saved it as an SVG to be imported to the
silkscreen layer in KiCad in the PCB Editor. We’ve covered this before in the series, but as
a reminder, it’s as simple as File > Import Graphics, and then, in the dialog, navigate to the
SVG, set it to import to the correct layer (in this case, the front silkscreen), and make sure
the scaling is set at ‘1’. It’s worth setting the PCB Editor grid to ‘1 mm’ so that you can align
other elements to the ruler design well. Finally, we were lazy and left the baseline in our
ruler graphic and then used the edge cuts geometry to remove it – this ensures that the
silkscreen ruler lines run right to the edge of the PCB. However, you can remove the original
line back in Inkscape. When you have your path effect applied, you can select the entire
ruler graphic and then use Path > Object to Path to convert the path effect into regular
paths. Then, using the node selection tool, you can select the bottom line and delete it. A tip,
as it’s difficult to grab the nodes at the end of the baseline, is to zoom in and then bend the
line away by dragging the baseline in between two of the graduation line nodes. Once the
line is bent away from the graduations, you can click it and delete it.

Above
In the original render preview, the LED polarity couldn’t be
ascertained as JLCPCB had a problem with the 3D model. After an
engineer inspected the part, the correct orientation was confirmed

TUTORIAL

56

KiCad: Making a smart stepper motor

KiCad: making a
smart stepper motor
In this section of the KiCad series, we adapt our earlier minimal RP2040 design
to create an ‘Urumbu’-style stepper motor control board

U rumbu is a mechanical concept
created by Neil Gershenfeld of MIT,
which concerns creating multi-axis
machines simply, sidestepping
some common approaches, and
leveraging the development of

computers. The go-to standard for many machines
for many years is to feed them G-code line by line,
using some kind of G-code sending application to
stream the lines into a controller. This, in turn, drives
the individual stepper motors to move the relevant
axis. It’s a solid system, but it harks from an era
where parallel processing capabilities were rare and
incredibly expensive.

Urumbu is interested in streamlining the making of
machines, reducing both the cost and the complexity.
In simplified terms, it essentially uses stepper

Jo Hinchliffe (AKA
Concretedog) is a constant
tinkerer and is passionate
about all things DIY space.
He loves designing and
scratch-building both
model and high-power
rockets, and releases the
designs and components
as open-source. He also
has a shed full of lathes
and milling machines
and CNC kit!

Jo Hinchcliffe

motors (or theoretically other actuators) that have
been adapted with an embedded microcontroller
to run directly via USB connectivity. This means
that, potentially, we can sidestep using G-code, and
perhaps even avoid CAM altogether. Imagine building
a machine where you perhaps parametrically define
the output object and the script, or perhaps Python
application, directly calculates the geometry of the
form and directly controls the rapid prototyping
machine connected to a convenient USB hub. This
article won’t cover all that, but it’s well worth reading
the article Minimal Machine Building, which you can
download from hsmag.cc/urumbu.

You can also look around the Fab Lab depository,
where you can find projects that have used the
Urumbu approach, like this excellent pointing
machine: hsmag.cc/point.

TUTORIAL

KiCad: Making a smart stepper motor

http://hsmag.cc/urumbu
http://hsmag.cc/point

57

FORGE

 A NEW START
Let’s create a separate copy of a KiCad project to work
on. Open the Minimal RP2040 project we created, and
then simply click File > Save As. We can then create
another folder on our system and save the project into
it with a new name. If you then open this folder in a
file management application, you will see that all the
KiCad-generated project files (the .sch and .pcb etc.)
have been renamed to the new project name. We can
also tidy and delete files which are specific to the old
project and not relevant to the new project. For example,
we won’t be using the Gerbers, the CSV position and
BOM files, as these will be different for the new project.
Similarly, the edge-cut SVG that we created in Inkscape
for the Minimal RP2040 project won’t be used, so can be
deleted. It’s worth mentioning: make sure that you are in
the right project folder before you start deleting files!

Above
An Urumbu-style
smaller NEMA 14
motor with a CNC-
milled, SAMD11-
based board attached

Potentially, we can
sidestep using G-code,
and perhaps even avoid

CAM altogether ”
”

As the concept for Urumbu stepper motors is
to use USB for control, the RP2040 IC is a great
candidate for powering a driver board. There have
been examples in the Urumbu community using
NEMA 14 motors, which are convenient in the
fact that they can often be controlled and powered
by USB 2.0 and above. However, most small
experimental rapid prototyping machines tend to
use the larger NEMA 17 class of stepper motor.
Check out any smaller home- or office-use 3D printer,
smaller desktop CNC router, or hobby pen plotter and
you’ll find NEMA 17.

With NEMA 17 as our target, the first port of call is
to find some mechanical dimensions and make some
fundamental decisions. Looking at datasheets for
NEMA 17, we find that the outer dimensions of the
package are 42 by 42 mm, and that they have a set

Left (opposite page)
The finished PCB
attached to a NEMA 17
stepper motor

TUTORIAL

58

KiCad: Making a smart stepper motor

Below Right
Creating a custom
symbol for any of the
various similar form-
factor stepper motor
driver modules

Figure 1
A NEMA 17 outline
graphic laid out in
Inkscape is imported
as an SVG into the
minimal RP2040
example to see what
area we are
playing with

of M3 bolts through the assembly in the corners
of a 31 mm square. As we plan to use the minimal
RP2040 circuit example as the basis of this project,
it was a good starting point to draw up a NEMA 17
footprint and drop it into the minimal RP2040 design
to see how things look (Figure 1).

We drew up a quick NEMA 17 footprint in Inkscape
and imported it to the edge cuts layer in KiCad using
File > Import > Graphics. It was obvious that we
would have to reduce the size of some aspects of
the minimal RP2040 layout, but not unreasonably. We
wouldn’t need all the GPIO pins broken out, so there
were some easy space-savings to be had. There was
probably just about enough room to also lay a motor
driver IC and peripheral components on the board, but
an early decision was made to actually use a module
for the motor driver section as then the board would be
compatible with a range of motor drivers. This meant
it was necessary to expand the board dimensions in
one axis. With this basic feasibility worked out, we set
about editing the schematic to create our new project.

In the schematic editor, we first deleted all the
GPIO breakout header sections as they weren’t
needed. We then used the symbol editor to create
a custom symbol for our motor driver module (we
covered creating symbols in the early parts of this
KiCad series). With the symbol created, we then
connected it to the RP2040 using labels to keep the
general schematic sections easier to read.

59

FORGE

 STARTING A WAREHOUSE
One way to avoid some of the component problems we have had in these projects is to
pre-order components to be held ready for use in your project. This is sometimes referred
to as a ‘virtual warehouse’, where you can buy an inventory of component stock and hold
them until you are ready to place them onto a PCB assembly. This functionality is already
built into your JLCPCB account and you can simply, once signed in to your account, move
to the ‘Parts Manager’ page. On this page, you can use the ‘My Parts Lib’ to view and to
add to your personal parts library. You can buy both Basic and Extended parts, and you
can also pre-order out-of-stock extended parts for when they are hopefully restocked. For
Basic parts from the JLCPCB parts warehouse, you have a minimum order requirement.
However, basic parts are much less likely to go out of stock and, if they do, they are likely
to have an alternate similar part available. One thing you need to know, though, is that
these pre-purchased parts are only for use in assembly services – you can’t suddenly have
your library of parts mailed to you as a component order.

If you are creating a project and you think you are going to have a long development
time where component stock might be an issue, this can be a great option for your peace
of mind.

Figure 2
KiCad’s workflow
means that we can
often simply add
generic component
symbols to a schematic
and worry about which
actual component each
one will be later

One difference with running a NEMA 17 rather
than a NEMA 14 is that although you could, in a
slightly limited fashion, run the motor at 5 V from
a beefy USB supply, it’s likely you might want to
run it from a larger external voltage. Most of the
common stepper driver modules have the ability
to do this, and have a ‘VM’ pin into which you can
connect an external supply. We wanted to retain the
ability to use either USB or VM, so we needed to
add a connector for an external supply and a diode
to protect the USB side of the system when the
external supply was used. One of the great things
about KiCad, that we may have mentioned before, is
that the workflow of separate schematic symbols to
which you then assign a component footprint means
that we don’t have to work out exactly which diode
we are going to use at this part of the process. We
can simply place a diode symbol and wire it into the
schematic and consider the package later (Figure 2).

In addition to our motor driver, we wanted to add
two header sockets connected to GPIO and ground
to which we could attach switches to act potentially
as limit switches to provide feedback and control
options for any machines that we might develop
with these motors. Again, we simply added these to
the schematic.

With our adapted schematic largely complete,
we set about making decisions on component
choices and we also began to check previously used
components were available. This is where things
can get very tricky and time-consuming when using
PCBA services. We were glad to see

TUTORIAL

60

KiCad: Making a smart stepper motor

Figure 3
A new USB connector
has been identified
and the footprint
created by converting
the EasyEDA example
on the product page

that the RP2040, the Winbond flash chip, and the
12MHz crystal were still in stock with JLCPCB.
We also took the time to check that the smaller
components, the capacitors and resistors, were all
also in stock.

However, the USB socket and the 3V3 voltage
regulator we had used previously were no longer in
stock. Both of these are high turnover items and,
at one point in this process, we couldn’t identify
any 3V3 voltage regulators in any package that
were suitable for our project. We also found some
challenges in that there would be a regulator listed,
but not enough information available either in the
listing or sometimes in the specific component's
datasheet to actually make a decision on whether to
include the part. With items like voltage regulators,
it’s fair to say that LCSC, the company that is the
back end of the JLCPCB component warehouse, is
continually changing and adding items and stock.
What can appear a huge problem one day in your
search results can suddenly have half a dozen more
options in a couple of days' time.

We eventually found replacements for all our
non-stock components. The replacement USB

socket required a different footprint, and we used
the approach of downloading the JLCPCB EasyEDA
footprint and uploading it to the Wokwi EasyEDA to
KiCad converter site, which again worked flawlessly
(Figure 3). See earlier sections of this series for more
examples of this in use.

The new USB connector had some through-hole
chassis components, but was listed as an SMD. This
concerned us, as the PCB assembly service charges
quite a bit more for through-hole than surface-mount,
but the part was attached via the single side surface-
mount services without problems.

Having struggled to identify a suitable voltage
regulator in any package at one point, having left
the project for a couple of days we then found
different stock available in the JLCPCB parts library
and managed to find a drop-in replacement regulator
which would sit on the same SOT23 footprint. It’s
definitely worth triple-checking the footprint and
pinout of any swapped components to ensure that
your wiring still works.

With most of the problems solved with regards
to components, we set about editing the PCB
layout. We needed to make the minimal RP2040

61

FORGE

 WHOOPS-A-DAISY
In the spirit of failing out loud, we’d like to share a huge error we made in the
production of this PCB. As you’ll read in the main text, we decided to use motor driver
modules rather than designing around a particular motor driver IC, as this meant we
have lots of flexibility and redundancy with regard to motor drivers potentially going out
of stock. The motor driver boards like the TMC2208 module, the DRV8833 module, and
the A4988 module all share a common footprint with 16 pins, in two rows of eight pins in
2.54 mm spacing.

We didn’t have the spacing between the rows, but a friend had a module on their desk
and we messaged them for some dimensions. They sent me a collection of pictures with
callipers held to the board, and also the module placed into a breadboard. We quickly
counted across the breadboard to see how many columns wide the module was. It’s six
columns wide across the pin rows. When laying out the simple footprint for the module,
we set the grid to 2.54 mm in the footprint editor and then drew one column of eight pins.
We then counted across six rows and laid out the second column. Of course, that is an
error: counting six rows across makes a module that would span seven columns of a
breadboard, and is therefore 2.54 mm too wide. The simplest things are often the worst!
The challenge with this sort of error is that they are not the kind of errors that can be
detected by the DRC system, as connectivity to this simple footprint looks correct to
the system. Only when the assembled PCBs arrived did we realise the error. Of course,
this has been revised in the repository, so if you download this project, the footprint is
correct. For the small number of boards we had manufactured, the horrid workaround is
to slightly angle in the header sockets to bring them close to correct and then insert the
module. Crude, but allows us to use the boards. We think it’s fair to say that everyone
will make mistakes; if and when it happens to you, try not to beat yourself up too much!

Left Below
When trying to
minimise redesigns
and faced with
component changes,
you’ll spend a lot of
time using the
search options!

Left Above
The complete
Urumbu RP2040
PCB layout

layout more compact to fit within the NEMA 17
footprint, and so we moved the actual RP2040 and
crystal upwards, decreasing somewhat the distance
between it and the USB socket. Sometimes, in
reworking a PCB like this, the grab function is quite
handy, where you can select a track, or a selection
of tracks and components, and then use the ‘G’
hot key rather than ‘M’ and, instead of simply
moving the objects, they are grabbed and the track
connectivity remains which the tracks can move.
This rarely results in a neat set of tracks in our
experience, but it can be useful to create a quick
new routing which you can then manually edit
to neaten.

With the PCB design complete, it was the usual
case of creating the Gerbers, BOM, and positional
files for the project and uploading to JLCPCB. After
a short production and delivery of the assembled
PCBs, we created a standoff design for 3D printing
using FreeCAD, and then the boards simply attach
to a NEMA 17 using some longer M3 bolts. If you
are interested in replicating these boards or playing
with RP2040 Urumbu-style approaches, download
this project from hsmag.cc/issue76.

http://hsmag.cc/issue76

48

KiCad: Making an RP2040 game controller

SCHOOL OF MAKING

KiCad: making an
RP2040 game controller
Let’s explore adapting our RP2040 layout to make a USB game controller

I n earlier articles in this series, we
established that we have a reasonable
working RP2040 layout, so now it’s pretty
trivial to create new RP2040 devices. In the
last section we made an ‘Urumbu’-style
motor driver board, and in this section we are

going to create a simple USB game controller
(Figure 1).

It’s largely the same process we undertook for the
Urumbu project, but simpler. We started by making a
copy of our Urumbu project and cleaned out the files
in the new project copy that we wouldn’t need. So,
any particular files like the board edge geometry, the
Gerbers, and CSV files can be deleted as we will
replace them with ones generated for the new
project. We also quickly deleted all the Urumbu parts
we didn’t need from the schematic. Note that we
don’t really need to delete items in the PCB Editor,
as when we eventually pull in the updated netlist
and bill of materials, we can automatically delete
unreferenced footprints, and the new footprints will
be brought in.

Jo Hinchliffe (AKA
Concretedog) is a constant
tinkerer and is passionate
about all things DIY space.
He loves designing and
scratch-building both
model and high power
rockets, and releases the
designs and components
as open-source. He also
has a shed full of lathes
and milling machines and
CNC kit!

Jo Hinchcliffe

We want to add six tactile buttons to our RP2040:
four in a D-pad arrangement and two as A- and
B-style buttons. We want these buttons to be
momentary press buttons and ‘push to make’. We
then plan to use these buttons to connect one side
to a GPIO and the other side of the button to ground.

Scouring the JLCPCB parts library, we came across
the C221902 button. This part looked a nice size, so
we took a look at the EasyEDA schematic and
footprint. It has four pins and, reading the schematic,
we could see that if we connected pin 2 to a GPIO
and then connected all the other pins to ground, it
would work as we wanted. Additionally, with the four
SMD pads, it should mechanically be pretty strong.

With our choice made, we used the excellent
Wokwi EasyEDA 2 KiCad website to convert the
supplied footprint to a KiCad format: (hsmag.cc/
easyEDA2KiCad). We then added it to our custom
library. We covered this in earlier sections of this
series, but it’s pretty straightforward. You upload the
EasyEDA JSON file, and it then downloads a KiCad
PCB file with the footprint loaded into it.

Figure 1
The completed game
controller PCB

http://hsmag.cc/easyEDA2KiCad
http://hsmag.cc/easyEDA2KiCad

49

FORGE

Figure 3
Our completed PCB layout

Additionally, with the
four SMD pads, our PCB
should mechanically be

pretty strong ”
”

To add the buttons to our schematic, we created
a custom 4-pin schematic symbol and inserted it
into a hierarchical sheet. We wired the GPIO pin and
the other pins to ground and then brought out the
GPIO hierarchical pin. We then copied the
hierarchical sheet to create six versions, one for
each button, adjusting the label and the sheet name
as we added each (Figure 2). Again, we’ve covered
this in earlier sections.

Next, we assigned the new footprints to the
schematic symbols and began to edit the PCB
layout. We created a new board edge geometry SVG
in Inkscape with some mount holes before carrying
out the usual exporting of Gerbers, BOM, and
positional files for JLCPCB services (Figure 3).

Figure 2
Using hierarchical sheets makes it easy to add multiple
similar connected schematic blocks, such as the buttons

Having ordered the boards, one final fun activity
on the hardware side of this build was to export a
STEP file from KiCad to model around in FreeCAD.
To export a basic STEP file from the KiCad PCB
Editor, select File > Export and then choose STEP as
the output format. Note that we haven’t added
custom 3D models for all of our custom
components, so obviously the STEP file isn’t
completely correct, but it serves as a good enough
guide to model around in FreeCAD.

SCHOOL OF MAKING

50

KiCad: making an RP2040 game controller

Figure 4
Modelling a simple
enclosure in
FreeCAD to make our
controller a little more
comfortable to hold

 HIGH PERFORMANCE
In this tutorial, we’ve looked at creating a gamepad
that’s easy to understand and extend. However, if
you’re looking to build a high-performance gamepad,
then there are lots of things that you need to take
into account. Part placement is obviously a large
part of it, as you need to be able to press buttons
consistently and accurately.

However, another part is the software. Our
CircuitPython code could be improved, but ultimately,
if you’re looking for high performance, CircuitPython
isn’t the right choice. Fortunately, there is another
option.

GP2040-CE is a firmware for RP2040-based devices.
You can configure it with details of what hardware
is connected where. It understands more than just
buttons, so you can add analogue inputs as well.

There’s documentation on the project website:
hsmag.cc/GP2040-CE.

In the free-to-download book FreeCAD For Makers,
we explored using FreeCAD and the KiCad StepUp
workbench that allows you to create and position
custom 3D component models for use in KiCad. We
also explored all the skills needed to create all kinds
of models. With the knowledge you gain from this
book, you could certainly make a controller enclosure
like the one we quickly modelled (Figure 4).

THE SOFTER SIDE
Now we have created our board, it’s time to write
some code for it. We could write our code in C using
the Pico SDK. We could also use the Pico build of
MicroPython or CircuitPython. However, since we’ve
created a new board, let’s create a firmware tailored
specifically for it – we’ll create a custom build of
CircuitPython. This allows us to do a couple of things.
Firstly, it lets us name the specific pins, so rather than
using, say, GPIO0, we can use BTN_A. Secondly, it
lets us select which modules we want to include. In
our case, we’ll add Adafruit HID, which enables us to
use our game controller as an input device.

The general process for creating a build of
CircuitPython is given in the documentation at
hsmag.cc/BuildCP. We won’t go through it in detail,
so follow that guide to set up your environment.

Once you have everything set up, you need to
create this board. In the directory circuitpython/
ports/raspberrypi/boards, copy the Raspberry Pi
Pico directory into a new one named appropriately

for the gamepad. We’ve called ours hackspace_
gamepad.

There are two files that we need to adjust to take
into account our board. Firstly, there’s pins.c, which
should have the following:

#include "shared-bindings/board/__init__.h"

STATIC const mp_rom_map_elem_t board_module_
globals_table[] = {
 CIRCUITPYTHON_BOARD_DICT_STANDARD_ITEMS

 { MP_ROM_QSTR(MP_QSTR_UP), MP_ROM_PTR(&pin_
GPIO0) },
 { MP_ROM_QSTR(MP_QSTR_RIGHT), MP_ROM_PTR(&pin_
GPIO1) },
 { MP_ROM_QSTR(MP_QSTR_LEFT), MP_ROM_PTR(&pin_
GPIO2) },
 { MP_ROM_QSTR(MP_QSTR_DOWN), MP_ROM_PTR(&pin_
GPIO3) },
 { MP_ROM_QSTR(MP_QSTR_BTN_A), MP_ROM_PTR(&pin_
GPIO18) },
 { MP_ROM_QSTR(MP_QSTR_BTN_B), MP_ROM_PTR(&pin_
GPIO19) }
};
MP_DEFINE_CONST_DICT(board_module_globals, board_
module_globals_table);

In this, we’re adding items to the board module.
Specifically, one for each button.

http://hsmag.cc/GP2040-CE
https://hackspace.raspberrypi.com/books/freecad
http://hsmag.cc/BuildCP

51

FORGE

Left
We found it easiest to build CircuitPython using
Windows Subsystem for Linux

 OTHER GAMEPADS
This example should get you started in the world of
game controllers, and there are loads that you can
look at for inspiration:

• The Arduino Esplora is now retired, but was one of
the first hackable game controllers on the market:
hsmag.cc/ArduinoEsplora

• There’s an online community at PCBWay’s shared
projects site that includes many game controllers,
including: hsmag.cc/PicoGamepad

• Gamepads come in many shapes. They’re usually
designed around ergonomics, but you can get a little
creative. For example, this maker has built a bat-
shaped controller: hsmag.cc/BatController

We’ll add Adafruit HID,
which enables us to use

our game controller as
an input device ”

”

Next, we need to edit mpconfigboard.mk to be
the following:

USB_VID = 0x1209
USB_PID = 0xB182
USB_PRODUCT = "HackSpace gamepad"
USB_MANUFACTURER = "HackSpace magazine"

CHIP_VARIANT = RP2040
CHIP_FAMILY = rp2

EXTERNAL_FLASH_DEVICES = "W25Q128JVxQ"

CIRCUITPY__EVE = 1

FROZEN_MPY_DIRS += $(TOP)/frozen/Adafruit_
CircuitPython_HID

In this file, we define the type of flash chip we
have and also add any ‘frozen’ modules we want.
Frozen modules can be anything that we want to be
included on the build by default (other than the core
modules that are automatically included). Frozen
modules have to be in the circuitpython/frozen
directory, but you should find that the Adafruit_
CircuitPython_HID module is already there.

You can now create your build by going to
circuitpython/ports/raspberrypi and running:

make BOARD=hackspace_gamepad

This will compile your code, and you should end
up with a build-hackspace_gamepad directory. In
there, you’ll find a firmware.uf2 file that you can
load onto your gamepad just as you would any other
UF2 file.

Obviously this isn’t complete firmware as it’s only
the programming language. We now need to write a
program to get everything working. Fortunately, we
have all the modules we need baked in, so there’s
no need for anything there. We’ve drawn inspiration
from the CircuitPython example code here:

import time
import board
import digitalio
import usb_hid
from adafruit_hid.keyboard import Keyboard
from adafruit_hid.keyboard_layout_us import
KeyboardLayoutUS
from adafruit_hid.keycode import Keycode

A simple neat keyboard demo in CircuitPython

The pins we'll use, each will have an internal
pullup
keypress_pins = [board.UP, board.DOWN, board.LEFT,
board.RIGHT, board.BTN_A, board.BTN_B]

http://hsmag.cc/ArduinoEsplora
http://hsmag.cc/PicoGamepad
http://hsmag.cc/BatController

SCHOOL OF MAKING

52

KiCad: making an RP2040 game controller

Right
Our custom build
of CircuitPython
brings everything
we need, including
pin names
and modules

 LEAD-FREE
It’s often cheaper to get boards made using leaded
solder. However, this might be a false economy.
Leaded solder is harmful to both your health and the
health of our planet. In the case of a games controller
– something that you’re going to hold in your hand
time and again – it’s more important than usual to opt
for lead-free solder. Even if only a tiny amount gets
on your hands each time you use it, that will still add
up over the course of the controller’s life, and could
have negative effects on your health.

Our array of key objects
key_pin_array = []
The Keycode sent for each button, will be paired
with a control key
keys_pressed = [Keycode.UP_ARROW, Keycode.DOWN_
ARROW, Keycode.LEFT_ARROW, Keycode.RIGHT_ARROW,
Keycode.A, Keycode.B]

The keyboard object!

time.sleep(1) # Sleep for a bit to avoid a race
condition on some systems

keyboard = Keyboard(usb_hid.devices)
keyboard_layout = KeyboardLayoutUS(keyboard)

Make all pin objects inputs with pullups
for pin in keypress_pins:
 key_pin = digitalio.DigitalInOut(pin)
 key_pin.direction = digitalio.Direction.INPUT
 key_pin.pull = digitalio.Pull.UP
 key_pin_array.append(key_pin)

print("Waiting for key pin...")

while True:
 # Check each pin
 for key_pin in key_pin_array:
 i = key_pin_array.index(key_pin)
 key = keys_pressed[i]
 if not key_pin.value: # Is it grounded?
 print("Pin #%d is grounded." % i)
 # "Type" the Keycode or string
 keyboard.press(key) # "Press"...
 else:

 keyboard.release(key)
 time.sleep(0.01)

As you can see, we can use board.UP, board.DOWN,
board.LEFT, board.RIGHT, board.BTN_A, and board.
BTN_B in our code. This has a couple of advantages.
Firstly, it is more intuitive for programmers.
Secondly, if we created another version of the board
with the buttons on different pins, the same code
could still run on both.

This code is a bit lazy. For example, there’s no
debouncing on the buttons. In practice, we’ve found
that this doesn’t cause many problems, especially
with the time.sleep(0.01) in there. This means it’s
not the most responsive controller, so if you’re
playing games where hundredths of a second matter,
you probably want to use something different,
including tuned debouncing, written in C. However,
this controller isn’t suitable for that type of game
anyway. This is also fairly cavalier with the number of
reports it sends (a report being a status update sent
from keyboard to computer). This will send six of
them every loop, which means several hundred a
second. Again, this isn’t great for performance.
However, it works reliably and is easy to understand.

With this code loaded, you should be able to plug
the controller into any computer and it will recognise
it as a USB keyboard. Press one of the buttons and
the computer should recognise that button press just
as it would from any keyboard. With this, you can
control any game that takes input from a computer.

Creating a custom version of CircuitPython isn’t
essential when you build a new board; however,
once you’ve been through the process once, it’s
easy, and makes life a little bit nicer, especially if
you’re distributing the board to other people.

54

KiCad: Making an RP2040 temperature sensor

SCHOOL OF MAKING

Making an RP2040
temperature sensor
Let’s explore adapting our RP2040 layout to make a simple weather station

I n this final project of the KiCad series,
we’re going to adapt our RP2040 layout to
make a rudimentary weather station. The
PCB will host an AHT20 sensor, which is a
good-quality sensor that can detect both
temperature and humidity via I2C. It’s made

by the same company that created the venerable
DHT22, which has long been a popular sensor for this
type of project.

Scouring the JLCPCB parts library revealed that
they have two versions of the AHT20 in surface-
mount packages. It’s important to double-check
components carefully, as one of the options (the F
variant) was built so that the vent hole for the sensor
was placed underneath the package, so required a
very accurate footprint that included a matching hole
through the PCB under the footprint. With our correct
package identified, we created a KiCad footprint for
the 6-pin device (although two pins on the device are
not connected).

The next step is a quick read of the datasheet. It’s
pretty straightforward to connect the AHT20, with

Jo Hinchliffe (AKA
Concretedog) is a constant
tinkerer and is passionate
about all things DIY space.
He loves designing and
scratch-building both
model and high power
rockets, and releases the
designs and components
as open-source. He also
has a shed full of lathes
and milling machines and
CNC kit!

Jo Hinchliffe

SDA and SCL pins having a pull-up resistor and a
bypass capacitor placed near the package. So far,
straightforward. The datasheet also recommends,
where possible, that the package has a routed
channel around it to isolate it thermally from the rest
of the system. You can get away without this, but
your temperature readings will be influenced by the
rest of the components on the board. You can never
fully thermally isolate a temperature sensor, but the
more you can disconnect it from the rest of the
board, the more accurate your readings will be.

Above
The completed
AHT20 board

 DOTSTAR GPIO PINS
You can use any pins for DotStar LEDs. However,
underneath the library, they communicate using the
SPI protocol. If you use the pins that are enabled
for the appropriate SPI functions, you’ll get better
performance. For a strip of 14 LEDs, the difference
is negligible, if there even is any. However, if you’re
handling larger displays, it pays to fully utilise the
specific SPI hardware on the RP2040.

55

FORGE

We wanted to be able to
hook this board up to a
wide range of outputs,

so we broke out a
healthy number of

GPIO pins

”

”

There are two ways we can create this cutout in
KiCad: add the cutout in the footprint, or place the
component in the PCB design and then add the
cutout manually. Obviously, if you add the cutout to
the footprint, you then have to edit the footprint if
you want to change the cutout design. Then, if you
have placed a footprint with the channel in the PCB
Editor, but not created an overall edge-cut geometry,
you can’t correctly preview your board as the 3D
viewer will consider the small channel the outside
edge of the entire design.

We opted to add the channel in the PCB editor,
having placed and routed the AHT20 sensor. We’ve
often, in this series, used Inkscape externally to
create and then import SVGs for graphic elements
and edge-cut geometries but, for simple items like
this, using the ‘Draw a basic polygon’ tool in KiCad is
simple and convenient.

It’s important that you check what are the minimum
slot dimensions that your fabricator can handle, as this
will be limited by the size of the bit they use for routing.
At time of writing, this is 1 mm on JLCPCB, so we made
our channel around 1.5 mm wide (Figure 1).

Figure 1 (Below)
Adding a slot around the AHT20 sensor to thermally isolate it
somewhat from the PCB

Right
Our completed PCB layout

The rest of the board lay up was pretty
straightforward. We wanted to be able to hook this
board up to a wide range of outputs, so we broke out a
healthy number of GPIO pins, and also added a small
pin header with numerous power connections.

After the usual session of silkscreen labelling and
tidying, we then went through the familiar process of
creating Gerbers, BOM, and Centroid positional files,
and uploaded the board for fabrication and assembly.

SCHOOL OF MAKING

56

KiCad: Making an RP2040 temperature sensor

Above (Left)
This is smaller and
more robust than
a dev board and
separate temperature
sensor

Above (Right)
A break in the PCB
thermally isolates the
temperature sensor
as much as possible

BRING IT TO LIFE
In the previous issue, we looked at creating a custom
version of CircuitPython but, this issue, we’ll use the
easier (though perhaps a little more boring) method
of using the CircuitPython build for Raspberry Pi Pico,
and incorporating any changes we need in the code.

When you receive your boards, they should come
with blank flash chips, which means that when you
plug them into a computer, an RP2 flash drive
appears. You can copy the Raspberry Pi Pico build
of CircuitPython onto this (download it from
circuitpython.org). Once this has fully copied over,
the RP2 drive should disappear and a CircuitPython
drive should appear. The only thing we need to add
to this is the DotStar module that we’ll need to
control our LEDs. You can get this from the Library
bundle which is also at circuitpython.org. This
comes as a zip file, so extract it, and copy the
adafruit_dotstar.mpy file from the lib folder to the
lib folder on the CircuitPython drive. Your device is
now all set up and ready to start coding.

The AHT20 sensor on this board is connected via
I2C, and we can connect to it using the adafruit_
ahtx0 module. We just need to set up an I2C object
first. This is done with:

i2c = busio.I2C(board.GP1, board.GP0)
sensor = adafruit_ahtx0.AHTx0(i2c)

 GETTING HELP
We’ve covered the basic use of KiCad in this series
but, as you progress, you may have questions or hit
upon problems that you aren’t sure how to solve.
There are a few places that you can go for
additional support.

The first port of call in most cases should be the
documentation at docs.kicad.org. These go into more
depth than we have in this series, and should also be
updated as things change.

There are also online communities, both of the
forum variety (kicad.org/community/forums) and chat
(kicad.org/community/chat). In both cases, these are
community resources for users to help each other out.

If you are using KiCad for a professional project
and you want an appropriate level of support, the
KiCad Services Corporation may be able to help. It
covers everything from helping you use KiCad, to
bug fixes, and implementing features you need. This
company employs some of the lead developers of
KiCad, so directly supports the project.

http://circuitpython.org
http://circuitpython.org
http://docs.kicad.org
http://kicad.org/community/forums
http://kicad.org/community/chat

57

FORGE

Above
Make sure you
attach wires to the
right end of the
LED strip (the arrow
shows the direction
the information
travels through
the strip)

Once this is set up, you can access the
temperature and humidity with sensor.temperature
and sensor.relative_humidity.

Now we’ve got temperature and humidity readings
on the board, the next question is what to do with
them. We’ve broken out the spare GPIO pins, so we
can hook up almost any other hardware we want.
We’ve opted for two strips of DotStar LEDs. These
are addressable RGB LEDs, so we can set any of
them to be any colour. We’re going to use them as
thermometer-style outputs, with one LED lit up at a
time. As the temperature or humidity goes up, the lit
LED moves up the relevant strip.

The DotStar LED strips have four connections,
VCC goes to 5 V, GND goes to GND (and there are
two of each on the board, so they can connect
directly to the pin). Each strip also has a Clock and
Data input connection, labelled SCK and DIN. We’ve
used pins 23 and 24, and 27 and 28 for these, but
any of the GPIO pins will work.

We can create the two DotStar objects with:

dots_temp = dotstar.DotStar(board.GP28, board.
GP27, 14, brightness=0.2, auto_write=False)
dots_humid = dotstar.DotStar(board.GP24, board.
GP23, 14, brightness=0.2, auto_write=False)

You can then access them like lists and assigning
an RGB tuple to an element in the list with. For
example, dots_temp[0] = (100,0,0). There are also
some methods that we can use including fill(),
which sets all LEDs in the string to a particular
colour. The full code for our temperature and
humidity thermometers is:

@import time
import board
import busio
import adafruit_ahtx0
import board

import adafruit_dotstar as dotstar

dots_temp = dotstar.DotStar(board.GP28, board.
GP27, 14, brightness=0.2, auto_write=False)
dots_humid = dotstar.DotStar(board.GP24, board.
GP23, 14, brightness=0.2, auto_write=False)

i2c = busio.I2C(board.GP1, board.GP0)
sensor = adafruit_ahtx0.AHTx0(i2c)

dots_temp.fill((0,0,0))
dots_humid.fill((0,0,0))

temp_range = (10,30)
temp_colour = (100,0,0)

humid_range = (0,100)
humid_colour = (100,100,0)

while True:
 print(“\nTemperature: %0.1f C” % sensor.
temperature)
 print(“Humidity: %0.1f %%” % sensor.relative_
humidity)
 dots_temp.fill((0,0,0))
 dots_humid.fill((0,0,0))

 temp_index = int(((sensor.temperature-
temp_range[0])/(temp_range[1]-temp_range[0])) *
len(dots_temp))
 dots_temp[temp_index] = temp_colour
 dots_temp.show()

 humid_index = int(((sensor.relative_humidity-
humid_range[0])/(humid_range[1]-humid_range[0])) *
len(dots_humid))
 dots_humid[humid_index] = humid_colour
 dots_humid.show()

 time.sleep(2)

SCHOOL OF MAKING

58

KiCad: Making an RP2040 temperature sensor

Above
We’ve left as many
pins as possible for
additional hardware
to be connected

If you’re interested in
the skill of PCB design,
then you can work on

technically more
challenging boards

”

”

You can save this to your board and you should see
the appropriate LEDs light up. Hold your thumb over
the temperature sensor and you should see the
LEDs change.

GOING FURTHER
We’ve now come to the end of our series on KiCad,
and we’ve worked our way up from simple boards that
connect modules and breakout pins, to creating our
own microcontroller boards with the hardware we
want, and we’ve programmed them along the way.
From here, you can take this hobby wherever you like.

If you’re more interested in practical solutions, then
you can keep designing boards as you need them. If
you’re interested in the skill of PCB design, then you
can work on technically more challenging boards. For
example, you could try starting with some of our
examples and seeing how small you can make them.
You could work on interesting or artistic boards,
such as those used for badges at hacker-focused
tech events.

 OTHER PROGRAMMING
 LANGUAGES

We’ve focussed on CircuitPython because that’s the
language we’re most familiar with, but you can program
the RP2040 board in a wide variety of languages.

The two officially supported options are C (via the
Pico SDK), and MicroPython. Additionally, there are
community projects that have brought a wide variety
of languages to the RP2040 processor. Some of these
might work out of the box, and others might need a little
tweaking in order to run.
• Arduino – technically, this is C++, but the IDE and

ecosystem make this feel like a distinct language. It’s
incredibly popular with hobbyists, mostly because there
are languages for essentially every bit of hardware
ever created.

• TinyGo – hsmag.cc/TinyGoPico. Go was designed by
Google to help them solve very large problems. Despite
the fact that microcontrollers, by their nature, very rarely
solve large problems, this language has leaked into the
embedded world. We’ve never used it, so can’t really
comment, but lots of people smarter than us think it’s
good, so it probably is.

• Rust – github.com/rp-rs/rp-hal. As far as we can tell,
this is supposed to do the same things as Go, but it was
created by Mozilla rather than Google.

• Forth – hsmag.cc/PiPicoForth. According to people with
grey hair who inhabit universities, Forth is the greatest
language ever written. We’re not entirely sure why, but
they’re very convinced of this fact.

• BASIC – geoffg.net/pi comite.html. This writer learned
to program in BASIC and has a certain fondness for it.
However, the world has moved on over the last 30 years,
and BASIC hasn’t. It can give some people a good hit of
nostalgia, but that’s about its only purpose.

http://hsmag.cc/TinyGoPico
http://github.com/rp-rs/rp-hal
http://hsmag.cc/PiPicoForth
http://geoffg.net/picomite.html

Tutorials from The MagPi Magazine

1

https://magpi.raspberrypi.com/

Design an electronic circuit for controlling high-power
LED lights or model railway lighting

T his tutorial will provide guidance on how to
design your own circuit using KiCad. It will
show how you can design a circuit that can

be used with Raspberry Pi Pico. This will include
choosing suitable components and designing a
schematic diagram. This will then lead to creating
your own custom printed circuit board (PCB) in
the next tutorial.

This circuit is to control three sets of lights
using buttons on the PCB or through a web
interface. The design can be used for 5 V or
12 V lights, making it suitable for either home
automation or model railway lighting.

Stewart
Watkiss

Also known as
Penguin Tutor.
Maker and YouTuber
who loves all things
Raspberry Pi and
Pico. Author of
Learn Electronics
with Raspberry Pi.

penguintutor.com

twitter.com/
stewartwatkiss

M
A

K
ER

Design a circuit
with KiCadPa

rt
 1

1

Warning!
Electrical Safety

Whilst 12 V will not
cause electrocution, it

can cause a fire. Ensure
power supplies have

over-current protection
and consider adding

a fuse.

magpi.cc/
electricalfires

01 Design idea
All projects start with an idea. When

creating a breadboard circuit, you have an
opportunity to experiment and change the design
as required. Creating a custom PCB involves
additional time and cost, so it is important to
spend additional time in the design phase to get
the circuit just how you want it.

It is often useful to create a design specification
that lists the features that you want, anything you
want to avoid, and any restrictions it needs to be
designed for. There may be restrictions on size, or
you may want to provide additional flexibility to

 The schematic diagram shows how the components will be wired together when designing the PCB layout

TUTORIAL

Design a circuit with KiCad60 magpi.cc

http://penguintutor.com
http://twitter.com/stewartwatkiss
http://twitter.com/stewartwatkiss
http://magpi.cc/electricalfires
http://magpi.cc/electricalfires
http://magpi.cc
http://magpi.cc

add extra features. Sometimes these may conflict
with each other, in which case you may need to
make some compromises. Listing these up-front
helps to keep your design on track.

02 Creating the initial design
With the idea and specification ready,

you can start to make basic decisions about the
circuit. Our first decision was to use a Raspberry
Pi Pico. This project could be made using a
Raspberry Pi computer, but it doesn’t need

that amount of power for
simple switching. Without
the overhead of an operating
system, Pico is more
responsive, more reliable, and
cheaper. A Pico W can be used
to provide Wi-Fi access.

The plan is to switch high-
power LEDs which are more
than can be powered just
using the GPIO pins on a
Pico, so this is going to need
MOSFET switch circuits.

It also needs to use switches
for input, and these can be

wired between GPIO pins and ground, using the
internal pull-ups in Raspberry Pi Pico.

03 Flexible design
One thing to consider when designing a

PCB is whether it will be used for a single circuit
or whether it can be used for multiple purposes.
It can be useful to include additional flexibility as
that helps justify the cost of having a PCB made,
but adding extra features will increase the size
and cost of the PCB.

You’ll Need

> 470 Ω resistors
magpi.cc/470ohm

> 1N5817 diode
magpi.cc/1n5817

> Switches
magpi.cc/
12x6switches

> PCB screw terminals
magpi.cc/
pcbterminal

> IRLB8721 MOSFET
magpi.cc/mosfet

> 5 V COB LED light
magpi.cc/cobled

> Power adapter
magpi.cc/
jacktoscrew

A Pico is mounted onto
the PCB, which is used to
control external LED lights

Copper tracks in the PCB
are used to connect the
electronic components

 Figure 1: KiCad
includes different
tools which can
be used to help in
designing printed
circuit boards

Design a circuit with KiCad 61magpi.cc

TUTORIAL

http://magpi.cc/470ohm
http://magpi.cc/1n5817
http://magpi.cc/
http://magpi.cc/pcbterminal
http://magpi.cc/pcbterminal
http://magpi.cc/mosfet
http://magpi.cc/cobled
http://magpi.cc/jacktoscrew
http://magpi.cc/jacktoscrew
http://magpi.cc
http://magpi.cc

The main thing here is what LED lights are to
be controlled. In the specification for this build,
it was decided that the board should be capable
of controlling both 12 V or 5 V LED lights. The
12 V lights would be useful for camping lights or
model railways, and 5 V would be useful for COB
(chip-on-board) lighting strips. An appropriate
voltage power supply is needed to match the
LEDs used.

04 Component selection
Having decided on the LEDs, you can

now choose a MOSFET that is sufficient for
controlling them.

A typical MOSFET for
switching LEDs is the
2N7000. This MOSFET can
switch up to 200 mA, which
will likely be sufficient
for model railway lights,
but not for the light strips
which can draw up to
600 mA. Looking at what
MOSFETs are available, you
can find the IRLB8721PBF
which supports up to 62 A,
more than we need with
plenty to spare. It is more
expensive than the 2N7000,
but the savings in having
a single transistor type
for different requirements

means that we can make savings by using a single
PCB design for multiple projects.

05 Prototyping
The next stage is to test if your design

will actually work. This is where the breadboard
comes in useful because it allows you to try out

different circuits and values. You may want to use
a multimeter, or even an oscilloscope to check
that the outputs are what you expect.

In this case, the electronics are made up of
common circuit configurations, but as it’s a
different MOSFET than before, you may want
to test it to see if it behaves in the way that
you expect. The diagram in Figure 2 shows an
example using single switches and a single COB
LED light strip to test the main components.

06 Moving to KiCad
In the design so far, you’ve hopefully

been making notes about the decisions you’ve
made. Now it’s time to convert those to create
a schematic diagram. The schematic diagram is

 The next stage is to
test if your design will
actually work

 Figure 2: A
breadboard
prototype with a COB
LED light strip and a
connector for a 5 V
power supply

 Figure 3: To include
a Pico in the design,
add the RPi_Pico.lib
library through the
Manage Symbol
Library menu option

TUTORIAL

Design a circuit with KiCad62 magpi.cc

http://magpi.cc
http://magpi.cc

useful because it shows each of the components
wired together without the difficulty of trying to
follow individual wires.

The tool used here is KiCad, which is open-
source software capable of creating professional
circuits. You can run KiCad on most computers,
including Raspberry Pi. To install on a Raspberry
Pi, use the terminal command:

sudo apt install kicad kicad-packages3d

07 Creating the schematic diagram
After launching KiCad, you should see

the project window. There should be no project
selected and the right-hand side of the window
shows the various tools which make up KiCad.
This is shown in Figure 1 (previous page). Create
a new project by clicking on the new project icon
and giving it a name, such as PicoLights. It will
create a new directory and create a KiCad project
file. You can then click on the Schematic Editor
on the right to start a new schematic diagram.

You are presented with a blank drawing area.
You can move around using a mouse with the
right button pressed, and zoom using your mouse
scroll wheel.

08 Adding a Pico footprint to KiCad
Whilst various models of Raspberry Pi are

included in KiCad’s component library, it does not
currently include a Pico. To add a Pico symbol,
first download the file from magpi.cc/kicadzip
(note: direct download).

This file is a complete PCB design, but
within the zip file are the files RPi_Pico.lib and
RPi_Pico_SMD_TH.kicad_mod. Copy both files
to a suitable directory (eg. KiCadLibraries) and
choose Tools > Manage Symbol Libraries.

Click on the ‘+’ icon to create a new library,
name it ‘RPiPico’, then click on the folder icon in
the Library Path column and select the lib file. It
will add it as a Legacy library. This is shown in
Figure 3. That .kicad_mod file will be used later
when creating the PCB.

09 Adding components
to the schematic

You can now add components by choosing Add
Symbol from the Place menu, or by using the icon
on the right-hand side of the schematic editor.
Click the screen to bring up the symbol selector
dialog, search for Pico, and select the one inside

 Figure 4: There are
over 15,000 different
symbols available
in the KiCad symbol
library and many
more are available
to download
from vendors

 Figure 5: All
components are
added and can be
arranged by moving
into position using
the M key

Top Tip
Power options

Your Pico can be
powered through
a 5V connection
to the screw
terminal, or by
using the USB
port on your Pico

TUTORIAL

Design a circuit with KiCad 63magpi.cc

http://magpi.cc/kicadzip
http://magpi.cc
http://magpi.cc

from machine import Pin
import utime

sw1 = Pin(3, Pin.IN, Pin.PULL_UP)
sw2 = Pin(4, Pin.IN, Pin.PULL_UP)
sw3 = Pin(5, Pin.IN, Pin.PULL_UP)

out1 = Pin(20, Pin.OUT)
out2 = Pin(19, Pin.OUT)
out3 = Pin(18, Pin.OUT)

while(1):
 if (sw1.value() == 0):
 # Toggle out1
 out1.value(1-out1.value())
 utime.sleep (0.5)
 if (sw2.value() == 0):
 out2.value(1-out2.value())
 utime.sleep (0.5)
 if (sw3.value() == 0):
 # Toggle out3
 out3.value(1-out3.value())
 utime.sleep (0.5)

simple-lights.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.

> Language: MicroPython magpi.cc/picolights

DOWNLOAD
THE FULL CODE:

the RPiPico library, then click OK to add it to the
schematic diagram. The symbol selector is shown
in Figure 4.

For the button switches, use SW_Push. This
will also provide headers which can be used to
connect to an external switch that can be added
as ‘Conn_02x03_Odd_Even’.

The MOSFET is the IRLB8721PBF and add gate
resistors (search for ‘R’ for the resistor symbol).

10 Powering the circuit
To provide power, a screw terminal is used.

This needs two power supplies: one for your LEDs
(12 V or 5 V depending upon LEDs) and one for the
Pico (5 V). These will be supplied using a 4-way
terminal connector, Screw_Terminal_01x04. A
1N5187 diode is also needed to allow either the
USB or screw terminal to be used.

The output will also be provided through screw
terminals to connect to your choice of LED.
Choose ‘Screw_Terminal_01x06’.

The components can be moved into an
appropriate position and rotated or mirrored
using the right-click menu. Arrange the
components so that they are similar to Figure 5.

11 Adding power connections
The value of the components can be

changed using the ‘Edit’ value from the right-
click menu. Change the resistors to 470R and
rename the connectors to represent their purpose.

Rather than having to wire up all the different
places where power is needed, power symbols
can be used. Use +12 V, +5 V, and a common
ground for both supplies’ GND. If you place
multiple power symbols with the same reference
(you can use duplicate from the right-click
menu) then they will all be connected together,
reducing the number of wires needed. Connect
the power symbols to the various components
using ‘Add wire’ from the Place menu. The power
connections for the input and Pico are shown
in Figure 6.

12 Wiring
The rest of the components can be wired

together to complete the circuit. When joining
wires, there will be a circle over the connection to
show that they are connected. If there is no circle,
then crossing wires are not electrically connected.

You should also annotate the components by
giving each a unique reference. You could do this
manually using the properties of each component,
changing ‘J?’ to ‘J1’ etc., or use ‘Annotate
Schematic’ from the tools menu.

Code is provided (simple-lights.py) to allow
you to test the prototype using the button LED.
In the next tutorial, you will use the schematic to
create a professional printed circuit board.

 Figure 6: Power label
symbols are used to
indicate the power
supplies. Labels with
the same name are
treated as though
they are connected

TUTORIAL

Design a circuit with KiCad64 magpi.cc

http://Pin.IN
http://Pin.IN
http://Pin.IN
http://simple-lights.py
http://magpi.cc/picolights
http://simple-lights.py
http://magpi.cc
http://magpi.cc

Make your own printed circuit board to make
your circuits more professional. Use the finished
PCB to control simple home automation

P reviously, we looked at designing a printed
circuit board (PCB) in KiCad. This time
around, we will go from a schematic in KiCad

to a printed circuit board design which can be sent
off to manufacture. Add the components and solder
it up to create a complete circuit. The design can be
used for 12V lights, including bright light strips and
model railway lighting, or the 5V COB lights used in
the earlier tutorial.

Using Pico W allows wireless access, so you
can control your lights using a smart phone or to
integrate with home automation.

01 KiCad schematic
This is going to start with the schematic

diagram from the previous tutorial. The diagram
is shown in Figure 1. The circuit is designed and
annotated but still needs some changes before
turning it into a printed circuit board.

Our Raspberry Pi Pico documentation (magpi.
cc/hwdesignrp2040) recommends connecting all
the grounds on the Pico to ground. This should be
set on pins 3, 8, 13, 18, 23 , 28 and 38. All the rest
of the pins should be set to unconnected, using the
Add No Connect Flag from the Place menu.

02 Electrical rules checker
Next it is useful to run the electrical rules

checker from the Inspect menu. This can be handy
to identify pins that you’ve forgotten to connect, or
are wired incorrectly.

Running this will bring up some errors and
warnings. They will be listed in the Rules Checker

Stewart
Watkiss

Also known as
Penguin Tutor. A
Maker and YouTuber
who loves all things
Raspberry Pi and
Pico. Author of
Learn Electronics
with Raspberry Pi.

penguintutor.com

@stewartwatkiss

M
A

K
ER

Create your
own PCB

You’ll Need

> PCB

> Soldering iron
and solder

> Bill of materials
magpi.cc/
picolightsbom

Pa
rt

 1
2

Warning!
Soldering

Soldering is relatively
safe, but does use a very
hot soldering iron. Take

care to avoid getting
burned.

magpi.cc/soldering

display as well as indicated by arrows on the
schematic diagram.

The errors all relate to not driving power
pins. This is because we are using the terminal
connections to provide power and KiCad is not
aware of that. To remove the three errors add a new
power symbol, choosing PWR_FLAG. Add this to
each of 12V, 5V and Gnd as shown in Figure 3.

03 Update the Pico symbol
The rest of the violations are warnings

which relate to some of the pins on the symbol
of the Pico. For example, Pin 39 is listed as
unspecified, but we are driving it as a power input.
These could be safely ignored, but if you want to
remove the messages edit the Pico symbol using
the symbol editor.

Choose the pin table and change 38 to Power
Input and 39 to Input. This is shown in Figure
4. Save the updated symbol and return to the
schematic to run the electrical rules checker again.
This will now just have the one warning saying that
the symbol Pico has been modified. You can right
click and exclude the violation.

04 Assigning footprints
Once the circuit passes the tests you can

move on to assigning the circuit symbols to their
physical symbols. This needs to be done because
there are different components which need
different pad positioning on the PCB. For example
there are different resistor sizes and you need to
tell KiCad which ones you intend to use.

TUTORIAL

Create your own PCB44 magpi.cc

http://magpi.cc/hwdesignrp2040
http://magpi.cc/hwdesignrp2040
http://penguintutor.com
http://magpi.cc/picolightsbom
http://magpi.cc/picolightsbom
http://magpi.cc/soldering
http://magpi.cc
http://magpi.cc
https://twitter.com/stewartwatkiss

Click on Assign Footprints from the Tools menu.
You will see that some are already filled in based
on their model number, including the MOSFETs
and the diode.

For the rest, you will need to manually choose
an appropriate symbol. There are three footprint
filters across the top which can be useful, as well
as clicking on the appropriate Footprint Libraries
on the left side.

05 Choosing appropriate footprints
Then select the terminal screw connectors

(labelled power input and LED outputs). Choose
“TerminalBlock_Phoenix” and ensure the
number of pins is selected in the footprint
filters. Choose the appropriate terminal block
based on the correct spacing, for example 5mm
matches TerminalBlock_Phoenix_MKDS-1,5-
4_1x04_P5.00mm_Horizontal. To ensure it
looks correct, right click, and use View Selected
Footprint. If you have installed the 3D package
then you can also click on the 3D icon on the top
of the view to see how it looks in 3D. See Figure 5.
Double click on the footprint to associate it with
the circuit symbol.

For the switch connection block use the library
Connector_PinHeader_2.54mm (the same distance
as the pins on a breadboard) and choose the one
with 2x03 Vertical.

Our circuit works with LED
lights up to 12V. Ideal for
simple home automation

06 Different footprint options
For the resistors then there are number of

different resistor sizes under the Resistor_THT
category (through-hole-technology). As well as
representing different sized resistors they provide
for different lengths of wires which can make
it easier to solder. A typical 0.5W resistor has
dimensions of approximately 9.9×3.6mm. Under
Axial L9.9mm D3.6mm you can choose the one
with P15.24mm which allows additional space for
the resistor legs. Look at the 3D image to see how
the resistor legs are bent a short distance from the
resistor body.

The final components are the push buttons which
you can use SW_PUSH-12mm.

The finished PCB creates a
professional-looking circuit.
Screw terminals make it
easy to connect the lights

 Figure 1. Here is
our schematic
diagram from the
previous tutorial.
The diagram shows
the logical circuit
design and how each
of the components
connect together

TUTORIAL

Create your own PCB 45magpi.cc

http://magpi.cc
http://magpi.cc

07 Adding the footprint library
The footprint for the RPi_Pico is listed but

cannot be used yet as it has not yet been added to
the footprint libraries. From the Preferences menu
choose Manage Footprint Libraries and add the
kicad mod file RPi_Pico_SMD_TH.kicad_mod,
which was downloaded in the previous tutorial.

You can check that it is loaded using the footprint
viewer. There is no 3D image for either the 12mm
push buttons or the Pico footprint, so if you choose
3D viewer it will just show the position of the
copper pads.

08 PCB board editor
After choosing the footprints run the PCB

editor, which can be launched from within the
schematic designer or by going back to the project
window. From the Tools menu click Update PCB
from Schematic to import all the component
footprints. The components will be imported,
but all positioned close together. Choose each
component individually and move them around to
the positions you’d like them to be on the PCB. The
switches should be on the left and the MOSFETs
with their resistors on the right near to the GPIO
pins assigned. Usually, you will want to put the
components close together to reduce the size of

the PCB, but not too close that it makes routing
wires more difficult. A suggested layout is shown
in Figure 6.

09 Adding mounting holes
Before starting routing it is useful to ensure

that all features are included in the layout. The
one thing that is useful for many PCBs is to add
mounting holes to make it easier to mount in
an enclosure. This could have been done in the
schematic but it’s not relevant there, so it can be
added just to the PCB.

Choose Add footprint from the Place
menu and search for ‘mounting hole’. You
can choose any appropriate size. M2.5 is a
common size for PCB mounts, so you could use
MountingHole_2.7mm_M2.5.

Once you have placed all the components you
can draw a rectangle to show where the edge of
the board will be. Choose the Edge.Cuts”layer
before drawing the rectangle. This is shown in
Figure 7 (see the blue arrow indicating the Edge.
Cuts layer is selected).

10 Laying the 12V tracks
When designing PCBs you can normally use

the default track width. For this project the current
from the power input could be as high as 1.8A so
will need wider tracks for those. Click on the Track
pull-down menu in the top left and choose Edit
pre-defined sizes.

Add a track width of 0.25mm (standard size for
KiCad and useful for most purposes) and one for

 Figure 4. Some of the warnings from the electrical
rules checker can be fixed by selecting the
correct input or output in the pin table

Top Tip
Different
component
packages

Electronic
components are
often available in
different packages
and sizes. Check
that you use the
KiCAD footprint
to match your
components

 Figure 2. The PCB
design. The same
components as
the schematic
diagram are instead
positioned as they
will on the final PCB

 Figure 3. Adding
PWR_FLAG
symbols will fix
the errors created
from the electrical
rules checker

TUTORIAL

Create your own PCB46 magpi.cc

http://magpi.cc
http://magpi.cc

1mm (for high current connections). Use the pull-
down menu to switch between those as required.

You can now start by routing the connections
around the board. First select the top copper layer
(F.Cu) and start drawing the wide tracks for the 12V
power connections and connections to the MOSFET
drain. Ignore Gnd as that will be done last.

11 Completing the tracks
Switch to the 0.25mm track size and

continue laying out the rest of the tracks. KiCad
shows the require connections (called nets) using
thin lines. You may find it useful to rotate some of
the components if that will make routing easier.
If it is not possible to run a connection without
crossing another track then you can switch to
the back copper layer B.Cu. The front layers are
coloured red and the back layers are blue to make
them easier to identify.

The ground connections can be handled using a
ground fill which can be placed on the front and
back layers. This will fill all the unused space on
the board with copper and connect it to ground,
which can help reduce electrical noise. Use Add
Filled Zone and draw a rectangle along the entire
PCB enabling both layers and GND. There will be
small lines around the PCB to indicate there is a
copper fill.

12 Inspect the PCB
Choose Fill all zones from the Edit menu

to connect the ground connections to the ground
plane. You can turn the display of the fill on and

off using the ‘show filled zone’ and ‘show zone’
boundaries icons on the left.

The status bar on the bottom should now show
‘unrouted’ as 0 to indicate that all the appropriate
pins are connected. If not, then add any missing
connections and re-run Fill all zones to update.

You can then run the Design Rules Checker to test
the PCB for potential errors. There will be warnings
about drilled holes being co-located (which relates

 Figure 6. Suggested
initial layout for the
components. The
final positions can be
adjusted later

 Figure 7. The Edge
Cut layer is used to
mark where the edge
of the PCB will be cut

 Figure 5. The 3D viewer can be useful to check
that you have selected the correct component

TUTORIAL

Create your own PCB 47magpi.cc

http://magpi.cc
http://magpi.cc

to the mounting holes) and silkscreen being clipped
by solder mask. These messages can be ignored.
Any warnings about silkscreen overlap can be fixed
by re-arranging the labels from the components.

13 Labels and final checks
The final part of the board design is to add

any additional text or labels which should normally
be on the F.Silkscreen layer. Only the text shown on
that layer (yellow) will be printed on the PCB.

As a final test you should also print a paper
copy of the PCB to check that the components
fit correctly. At a minimum, print the front
Silkscreen layer and compare it with the size of
your components.

14 Export for manufacturer
The final stage in KiCAD is to export the PCB

and send it to a manufacturer. The exact process
depends upon your PCB manufacturer, the example
used here is for JLCPCB and the process is explained
here: magpi.cc/jlcpcbprocess.

Choose Fabrication Outputs and Gerber. Set
Output directory to picolights-gerbers. Select
Protel filename extensions and Subtract soldermask
from silkscreen (this will fix some of the warnings
in the design rules checker). Then click plot. See
Figure 8.

In the same dialog box, click Generate Drill Files.
Choose Alternate drill mode for Oval Holes. Use mm

for drill units. Then Generate Drill File and then
Generate Map File.

You can then use the Gerber Viewer to check
the files. Look to ensure that all the layers line
up correctly and that the outline is shown without
any breaks.

Finally you can zip the file, submit it to your
chosen manufacturer, and wait for the results.

15 The PCB arrives
Depending upon your the manufacturer and

shipping times it may take a week or two before you
get the PCB back. This should provide time to buy
any parts you need ready to solder it together when
it arrives. A link to the bill of materials (BOM) is
included, which lists all the components. You will
also need a soldering iron and some solder. The list
is based on 12V light strips, but you could also use
the 5V COB LED strips and appropriate power supply
which were used in the previous tutorial.

16 Soldering
The components listed are all through hole

components which should make soldering fairly
easy. For best results, hold the soldering iron so
that it is in contact with both the pad on the PCB
and the lead of the component (see Figure 9). Then,
feed the solder in: it will melt and make a metal
joint between the component and the PCB. After
removing the soldering iron it should cool down
quickly to form a permanent electrical connection.
It’s usually easier to start with the smaller
components, such as resistors, as they fit flush to
the PCB. If a component won’t stay still then you
can use Blu Tack (sticky putty) or something similar
to hold the component in place whilst it is soldered.

17 Connecting to the lights
Once soldered, mount Pico into the headers

with the USB connector towards the top of the
board. Then connect suitable power supplies to
the terminals at the top. The 12V connection may
be a different voltage if using LED lights designed
for other voltages. The 5V supply is used for
powering Pico.

Connect an LED light to each of the three outputs
at the bottom of the PCB and it just needs the code
to be uploaded to your Pico.

Top Tip
Check the PCB

It is worth taking
time to check
all the routing
and component
positioning on the
PCB. This can help
reduce delays and
the cost later

 Figure 8. Use the
plot option to
export ready for
manufacture. You
may need to adjust
settings for different
manufacturers

TUTORIAL

Create your own PCB48 magpi.cc

http://magpi.cc/jlcpcbprocess
http://magpi.cc
http://magpi.cc

from machine import Pin
from utime import sleep
import network
import socket
import uasyncio as asyncio
import secrets
import re

Indexed at 0 (board labelling is 1)
These must be the same length (ie 3)
outputs = (20, 19, 18)
switches = (3, 4, 5)

shortened version for the pin objects
out = []
sw = []

html = “””<!DOCTYPE html>
<html>
<head> <title>Pico Lights Plus</title> </head>
<body> <h1>Pico Lights Plus</h1>

LED
1
LED
2

LED
3

</body>
</html>
“””
Uses out to toggle - sets led to same
def toggle_out (pin):
 new_state = 1 - out[pin].value()
 print (“Setting out {} to {}”.format(pin,
new_state))
 out[pin].value(new_state)

def connect():
 #Connect to WLAN
 wlan = network.WLAN(network.STA_IF)
 wlan.active(True)
 wlan.config(pm = 0xa11140) # Disable power
saving mode
 wlan.connect(secrets.SSID, secrets.PASSWORD)
 while wlan.isconnected() == False:
 print(‘Waiting for connection...’)
 sleep(1)
 ip = wlan.ifconfig()[0]
 print(f’Connected on {ip}’)
 return ip

027.
028.
029.
030.
031.
032.
033.
034.
035.
036.
037.
038.
039.
040.
041.
042.
043.
044.

045.
046.
047.
048.
049.
050.
051.

web-lights.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.
026.

> Language: MicroPython magpi.cc/picolights

DOWNLOAD
THE FULL CODE:

18 Upload the code
The code is provided for a basic web server

which needs to be installed on a Pico W. You will
need to use the network-enabled version of the
UF2 file, which can be installed using the installer
within the Thonny editor. The code file is named
web-lights.py, which can be saved on your Pico as
main.py to run automatically. A file called secrets.
py also needs to be saved onto your Pico with
entries for the SSID and PASSWORD for your local
Wi-Fi network.

When the code is running, you can connect to the
web server using a web browser. You will need the
IP address of the Pico which you can see through
the Thonny console or by looking at the address
allocation on your Wi-Fi router.

As well as using the web interface you can
also turn the lights on and off using the three
button switches.

 Figure 9. The soldering iron should be touching both the
pad and the component lead before adding solder

TUTORIAL

Create your own PCB 49magpi.cc

http://magpi.cc/picolights
http://magpi.cc
http://magpi.cc

web-lights.py cont...
> Language: MicroPython

def setup_pins ():
 # uses length of outputs
 for i in range (0, len(outputs)):
 out.append(Pin(outputs[i], Pin.OUT))
 sw.append(Pin(switches[i], Pin.IN,
Pin.PULL_UP))

async def serve_client(reader, writer):
 print(“Client connected”)
 request_line = await reader.readline()
 print(“Request:”, request_line)
 # We are not interested in HTTP request
headers, skip them
 while await reader.readline() != b”\r\n”:
 pass

 # Regular expressing Looking for toggle
request
 m = re.search (‘light=(\d)&action=toggle’,
request_line)
 if m != None:
 led_selected = int(m.group(1))-1
 # check valid number
 if (led_selected >=0 and led_selected <=
2) :
 print (“LED selected “+str(
led_selected))
 toggle_out (led_selected)

 writer.write(‘HTTP/1.0 200 OK\r\nContent-
type: text/html\r\n\r\n’)
 writer.write(html)

 await writer.drain()
 await writer.wait_closed()
 print(“Client disconnected”)

Initialise Wifi
async def main ():
 setup_pins ()
 print (“Connecting to network”)
 try:
 ip = connect()
 except KeyboardInterrupt:
 machine.reset
 print (“IP address”, ip)
 asyncio.create_task(asyncio.start_server(
serve_client, “0.0.0.0”, 80))
 print (“Web server listening on”, ip)
 while True:

 #onboard.on()
 # Enable following line for heartbeat
debug messages
 #print (“heartbeat”)
 await asyncio.sleep(0.25)
 # Check gpio pins 10 times between
checks for webpage (5 secs)
 for i in range (0, 5):
 check_gpio_buttons()

Main loop
def check_gpio_buttons ():
 for i in range (0, len(sw)):
 if sw[i].value() == 0:
 toggle_out(i)
 sleep (0.5)

if __name__ == ‘__main__’:
 try:
 asyncio.run(main())
 finally:
 asyncio.new_event_loop()
 except KeyboardInterrupt:
 machine.reset
 print (“IP address”, ip)
 asyncio.create_task(asyncio.start_server(
serve_client, “0.0.0.0”, 80))
 print (“Web server listening on”, ip)
 while True:
 #onboard.on()
 # Enable following line for heartbeat
debug messages
 #print (“heartbeat”)
 await asyncio.sleep(0.25)
 # Check gpio pins 10 times between
checks for webpage (5 secs)
 for i in range (0, 5):
 check_gpio_buttons()

Main loop
def check_gpio_buttons ():
 for i in range (0, len(sw)):
 if sw[i].value() == 0:
 toggle_out(i)
 sleep (0.5)

if __name__ == ‘__main__’:
 try:
 asyncio.run(main())
 finally:
 asyncio.new_event_loop()

052.
053.
054.
055.
056.
057.

058.
059.
060.
061.
062.
063.

064.
065.
066.
067.

068.

069.
070.
071.
072.

073.

074.
075.
076.

077.
078.
079.
080.
081.
082.
083.
084.
085.
086.
087.
088.
089.
090.
091.
092.

093.
094.

095.
096.

097.
098.
099.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.

119.
120.
121.
122.

123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.

TUTORIAL

Create your own PCB50 magpi.cc

http://Pin.IN
http://magpi.cc
http://magpi.cc

	License
	HackSpace Tutorials
	Getting started with KiCad, schematics
	Getting started with KiCad, PCB layout
	KiCad libraries, symbols, and footprints
	KiCad: using a PCB assembly service
	Designing an RP2040 board using KiCad
	KiCad: schematic organisation and hierarchical sheets
	KiCad, mechanical accuracy, and silkscreen features
	KiCad, different PCB substrates
	Exploring PCB services
	KiCad: making a smart stepper motor
	KiCad: making an RP2040 game controller
	KiCad: making an RP2040 temperature sensor

	MagPi Tutorials
	Design a circuit with KiCad
	Create your own PCB

